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Abstract—This paper introduces BlockReduce, a Proof-
of-Work based blockchain system which achieves high
transaction throughput by means of a hierarchy of merged
mined blockchains, each operating in parallel on a partition
of the overall application state. Most notably, the full PoW
available within the network is applied to all blockchains
in BlockReduce, and cross-blockchain state transitions are
enabled seamlessly within the core protocol. This paper
shows that, given a hierarchy of blockchains and its as-
sociated security model, BlockReduce scales superlinearly
in transaction throughput with the number of blockchains
operated by the protocol.

Index Terms—blockchain, distributed systems, perfor-
mance, scalability, proof-of-work

I. INTRODUCTION

Blockchains are popular as a means to enable trustless,

decentralized, peer-to-peer value transfer. Among the

approaches to achieving distributed consensus in cryp-

tocurrencies, Proof-of-Work (PoW) is the oldest, most

established, and arguably most well-understood. How-

ever, PoW-based cryptocurrencies are currently limited

in terms of transaction throughput in comparison with

traditional payment mechanisms such as credit cards.

This has resulted in increased transaction costs and

a greater shift towards alternate scaling mechanisms.

In particular, Proof-of-Stake (PoS), other Proof-of-X

consensus protocols, and a proliferation of Layer 2

protocols have been proposed and implemented in order

to enable lower transaction fees. All of these approaches

have different trust models in comparison with Proof-of-

Work and, as a result, come with their own associated

challenges and weaknesses.

S. Vishwanath is an advisor to Dominant Strategies and incubates
startups in the blockchain domain through ChainHub.

The two most notable cryptocurrencies, Bitcoin and

Ethereum, are both PoW-based1 and have a maximum

throughput of under 20 transactions per second [1],

[2], whereas Visa alone can execute more than 2,000

transactions per second on their credit card network [2].

Indeed, it is now presumed (without proof) by a majority

of people that PoW cryptocurrencies simply cannot meet

the throughput requirements of a global currency.

In this paper, we introduce BlockReduce, a PoW

cryptocurrency that achieves high transaction through-

put (as a Layer 1 protocol). We describe BlockReduce

by first identifying the primary factors that cause low

transaction throughput (and therefore, large fees) in PoW

blockchains. We then address and ameliorate each factor,

resulting in a truly scalable solution.

The primary tools underlying our solution for scala-

bility are as follows:

Latency-dependent Clustering of Network Nodes:

As noted across the literature [3], network latency is one

of the biggest factors in the scalability of blockchain

systems. In our work, we translate this understanding

of network latency into a suitable hierarchical cluster-

ing, where nodes self-partition into a hierarchy of sub-

networks with which they share low-latency connections.

Each sub-network operates its own blockchain to validate

and update a partition of the overall application state.

Transaction-dependent Security: Currently, a vast

majority of PoW cryptocurrencies afford the same level

of security—where, for our purposes, security refers

to the amount of work an adversary would need to

perform in order to succeed in a double-spend attack—

for all transactions, regardless of the economic value

of the transaction. However, in most human-commerce

1at the time of writing, Ethereum has not yet attempted the transition
to Proof-of-Stake

ar
X

iv
:2

11
2.

11
07

2v
2 

 [
cs

.D
C

] 
 2

7 
D

ec
 2

02
2



interactions, low-value transactions are not secured to

the same level as high-value transactions. For example,

credit card transactions of low value often do not require

signatures, while higher value transactions go through a

more stringent signature verification process. Ultimately,

even in the blockchain domain, we believe that security

should be transaction-value dependent, with high-value

blocks (and associated transactions) afforded greater

security guarantees. Thus, the amount of work applied

to all transactions for the sake of settlement need not

be the same in the short-term, although in order to pre-

vent transaction conflicts from proliferating, eventually

all transactions in BlockReduce must be validated and

secured by the maximum amount of work available to

the system.

Merged Mining: BlockReduce is composed of a

tree of blockchains operated in parallel. Rather than

performing PoW computations on a single block header,

miners simultaneously mine a blockchain at each level

of the tree using the same PoW computations, and one

PoW solution might correspond to a block in multiple

blockchains. This has two effects in BlockReduce. The

first is that all miners always mine on the root of the tree,

meaning the root blockchain receives all of the mining

power of the network. The second is that blocks are

found periodically which are shared between blockchains

at different levels of the tree (these blocks are called

coincident blocks), which allows work to be shared

across blockchains and also enables cross-blockchain

state-transitions.

A. Proof-of-Work Blockchains

The first published instance of Proof-of-Work being

applied to blockchains is Nakamoto’s famous Bitcoin

protocol [4], where Nakamoto combined PoW with a

block selection rule called the Longest Chain Rule to

achieve Nakamoto consensus on transactions. BlockRe-

duce uses PoW to reach a similar form of consensus on

each blockchain in the tree. In order to accommodate

for this hierarchical structure, we define a variant of the

Longest Chain Rule which we refer to as the Hierarchical

Longest Chain Rule. We describe these aspects of the

BlockReduce protocol in more detail in Sections IV-B

and IV-D.

B. Proof-of-Work Efficiency

A significant limiter of transaction throughput in pub-

lic blockchains is the amount of time it takes for data to

propagate within the peer-to-peer network after blocks

are mined. In order to provide intuition about this phe-

nomenon, we define the PoW efficiency of a blockchain

as the fraction of PoW computations which contribute to

the canonical chain (i.e., the chain of blocks which are

committed to the transaction ledger/state machine). In

the ideal setting in which all nodes follow the protocol

and there are no network delays on block propagation,

the PoW efficiency, E , is 1. This is because when there

are no propagation delays, all miners instantaneously

adopt each new block into their canonical chain.

To model a more realistic setting, we define λ as the

total rate of block generation by the network and the

network delay ∆ as the time between when a block

is found and when it is received by all nodes in the

network. Under this model, [5] computes the effective

block generation rate to be λ
1+λ∆ , resulting in a PoW

efficiency of E = 1
1+λ∆ .

Furthermore, if a fraction β of nodes are adversarial

and are mining a private branch of the blockchain as

part of an attack, then [5] computes the PoW efficiency

of honest nodes to be E = (1−β)
1+(1−β)λ∆ , which varies

inversely with ∆. On the other hand, assuming the ad-

versary experiences negligible network delay with itself

while mining a private chain (i.e., ∆ ≈ 0), then their

PoW efficiency is approximately 1. Herein lies the prob-

lem. If ∆ is fixed, then an adversary’s relative advantage

over honest nodes increases as the block generation rate

increases. Systems such as Bitcoin suppress λ in order to

reduce the impact of ∆ on the PoW efficiency of honest

nodes. This phenomenon is discussed in various works

[6], [7], and several solutions have been presented which

assume ∆ to be fixed. In BlockReduce, we partition the

network into sub-networks so that the ∆ experienced

by each sub-network is smaller than that of the overall

network, thereby allowing each sub-network to operate a

blockchain with a higher block generation rate. We can

achieve this while maintaining an equal PoW efficiency

across all blockchains, which we believe is critical to

a truly scalable blockchain. Moreover, we utilize the

Hierarchical Longest Chain Rule described in Section

IV-D to guarantee that each blockchain receives the

maximum amount of work available to the network,

thereby achieving high transaction throughput without

sacrificing security or PoW efficiency.

C. Our Contributions

We present BlockReduce, a PoW blockchain system

which enables high transaction throughput by utilizing

a hierarchy of merged mined blockchains operating in

parallel on non-overlapping partitions of the application

state. To the best of our knowledge, BlockReduce is the

first protocol which promises superlinear scaling with

the number of parallel blockchains it operates while still

securing each blockchain with the maximum amount

of work available to the network. We introduce the

Hierarchical Longest Chain Rule as a block-selection

mechanism which allows each blockchain in the hier-

archy to inherit the work of its parent blockchain and

also enables native, cross-blockchain state transitions



between any state partitions in the hierarchy. Finally, we

analyze the performance of the protocol to demonstrate

the superlinear scalability of BlockReduce.

II. RELATED WORK

There have been a number of proposals for scaling

transaction throughput in blockchains. We provide a brief

summary of several types of approaches.

A. Parallel PoW Blockchains

In a manner conceptually similar to BlockReduce,

many protocols aim to achieve high transaction through-

put by operating several blockchains in parallel. The

PoW version of Parallel Chains [8] involves mining a

metablock containing candidate blocks for a number

of parallel chains which operate non-overlapping state

partitions. Notably, Parallel Chains does not support

cross-blockchain transactions and is therefore of more

limited application than BlockReduce. Chainweb [9] is

another protocol operating many parallel chains, where

each block header references the headers of other chains

in order to braid the chains together. Chainweb allows

cross-blockchain state transitions and also features a

mechanism by which chains inherit work from one

another, but it can achieve only a linear increase in

transaction throughput with the number of parallel chains

whereas BlockReduce achieves superlinear scaling.

B. Proof-of-Stake Protocols

Many Proof-of-Stake protocols have been proposed

and implemented, such as Ouroboros Praos [10] and

Ethereum’s planned move to Proof-of-Stake, as a means

to enable high transaction throughput and low settlement

times. However, Proof-of-Stake protocols currently do

not afford the same security guarantees as PoW and

also often suffer from shortcomings such as the “nothing

at stake” problem or predictability on the next eligible

validator [11].

C. Layer 2 Protocols

There are multiple Layer 2 protocols (i.e., proto-

cols which operate independently and only periodically

interact with the blockchain) which have been devel-

oped in order to facilitate high transaction throughput.

These include Starkware, Polygon, and Lightning among

many others [12]. Although some such architectures can

achieve high transaction throughput, Layer 2 solutions

inevitably require alternate trust models from the core

blockchain protocol which may not be suited for all use

cases. BlockReduce scales as a Layer 1 protocol and

does not require those additional assumptions to achieve

high transaction throughput.

III. MODEL

In this section, we describe the network model under

which we analyze the BlockReduce protocol. We adopt

a simple overlay-network model to understand the inter-

actions between nodes: that of a d-regular graph on N

network nodes. This model arises from the standard set

forth by Bitcoin, where the protocol executed by each

node attempts by default to maintain a set of 8 peers.

We assume a synchronous, round-based model for

block propagation. According to [13], with probability

1 − o(1), the number of synchronous rounds required

for data to broadcast via gossip in a random d-regular

network of N nodes is

(1 + o(1))
( 1

ln(2(1− 1
d
))

−
1

d ln(1− 1
d
)

)

lnN. (1)

We use this result to characterize the overall network

propagation delay ∆ (i.e., the amount of time it takes

for a single block to be propagated across the network)

in terms of the average single-link propagation delay, δ,

as follows.

∆ = δ(1 + o(1))
( 1

ln(2(1− 1
d
))

−
1

d ln(1− 1
d
)

)

lnN.

(2)

Adopting the shortened notation of [13], this gives us

the following bound:

∆ < δCd lnN. (3)

We define ∆ in this way to show that ∆ decreases as δ

or N decrease. In Section IV we use this understanding

to show that ∆ is reduced in higher order blockchains

within the BlockReduce protocol, thereby allowing for

higher block generation rates while still maintaining high

PoW efficiency within those blockchains.

IV. A HIERARCHY OF BLOCKCHAINS

In this section, we describe the BlockReduce protocol

and show that all nodes operating a particular blockchain

are able to agree upon its state.

A. Notation

The BlockReduce protocol requires that nodes self-

partition into a hierarchy of sub-networks, where the

hierarchy is a tree consisting of R levels called orders.

Each sub-network is denoted N~v , where ~v is the unique

path from the root to the specified node in the hierarchy

tree. The root of the hierarchy tree is of order 1, and the

leaves are of order R. An example of a BlockReduce

hierarchy structure and its associated sub-network parti-

tioning is provided in Figures 1 and 2. In this example,

the hierarchy has three orders, and networks of order 1

and 2 each have two child sub-networks.
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Figure 1. Hierarchy tree with 3 orders, where each box is a sub-
network which operates a distinct blockchain.

Each sub-network N~v operates a blockchain B~v

to achieve consensus on a partition of the state S~v .

Blockchains of order r have block arrivals at a rate λr,

network delay ∆r, and an average single-link propaga-

tion delay δr.

Figure 2. Illustration of topological network segregation: a) full
network b) two order 2 sub-networks c) four order 3 sub-networks.

We adopt a functional notation when discussing rela-

tionships between sub-networks, blockchains, and state

partitions. We denote parent(N~v) to be the parent sub-

network of N~v in the hierarchy tree and order(N~v) = |~v|
to be the order of N~v . We often overload this functional

notation with inputs B~v , S~v , or simply ~v, and these

functions are evaluated in the same way.

B. Merged Mining

Mining in BlockReduce is similar to mining in a

standard PoW blockchain except that, in BlockReduce,

multiple blocks are mined simultaneously using a tech-

nique called merged mining [14], and the Longest Chain

Rule (LCR) introduced by Bitcoin [4] is modified to

accommodate the hierarchical structure of BlockReduce.

Each BlockReduce miner selects an order R

blockchain (a leaf node in the tree) and simultaneously

mines each blockchain along the path from root to leaf.

For example, the miner might select the leaf B{1,1,1},

in which case they would simultaneously mine B{1},

B{1,1}, and B{1,1,1}. To accomplish this, miners con-

struct a block for each blockchain they are mining,

concatenate the block headers together, and perform

PoW computations on the combined block header; as

a result, those blocks will all share the same block hash.

Blockchains closer to the root of the hierarchy have

increasing and overlapping PoW difficulties so thaat

a block which meets the difficulty requirement of a

blockchain of order r also meets the difficulty require-

ment of each blockchain of order greater (i.e., further

from the root) than r. For example, Figure 3 depicts

a sequence of blocks in a system with 3 orders. In

this example, the difficulty requirement for an order 1

block is that the block hash has 12 leading 0’s (in the

binary expansion), whereas an order 2 block requires

only 8 leading 0’s, and an order 3 block requires 4

leading 0’s. In this case, an order 1 block with 12

leading 0’s also meets the difficulty requirement of

each other order. A block which is shared by multiple

orders in this way is called a coincident block because

it serves to coincide these blockchains under a shared

block reference. In Section IV-D, we show that under

the Hierarchical Longest Chain Rule, coincident blocks

impose a partial ordering on blockchains of different

orders which enables cross-blockchain state transitions.

0x0FFF 0x00FF 0x0FFA 0x000F B{1,1,1}
✛ ✛ ✛

0x00FF 0x000F✛ B{1,1}

0x000F B{1}✬

✫

✩

✪

✬

✫

✩

✪
B1 B2 B3 B4

Coincident

block

Coincident

block

Figure 3. Example block visualization for a system with 3 orders.
Each box represents a block, and the value inside the box is the
hexadecimal representation of the block hash. Blocks in the bottom
row make up blockchain B{1,1,1} and so forth. Block B2 meets the
difficulty requirement of B{1,1} and is therefore a coincident block
shared by orders 2 and 3, B4 is also a coincident block but is shared by
all 3 orders, and blocks B1 and B3 only meet the difficulty requirement
of B{1,1,1}.

C. Partitioning the Ledger State

We adopt a generic state model in which each trans-

action constitutes an update to the application state.

This generality allows BlockReduce to support the Un-

spent Transaction Output (UTXO) model, in which

the application state is simply the set of all UTXOs,

as well as more sophisticated smart contract models,

where the application state is the smart contract state.

State is partitioned between all blockchains to prevent



duplication, and for the purpose of cross-blockchain

state transitions, each transaction must specify an origin

blockchain ~vo and a destination blockchain ~vd. If the

origin and destination of a transaction are the same, the

state transition occurs in the same way as a traditional

blockchain implementation. If the origin of a transaction

is different from its destination, for example if an asset

is being tranferred from one blockchain to another, then

the state update involves removing the asset from the

origin state and adding it to the destination state. This

leads to the following protocol rule.

Protocol Rule 1. In order for a transaction with origin

~vo to be valid, the state that it modifies must be valid

with respect to S ~vo .

For example, if a user is attempting to move an asset

from ~vo to ~vd, then the transaction must have origin ~vo
and the user must demonstrate ownership of the asset in

S ~vo .

D. The Hierarchical Longest Chain Rule

BlockReduce utilizes a novel consensus rule to select

the canonical chain—i.e., the chain of blocks referencing

state updates to be applied—for each blockchain. In

Bitcoin and other more traditional systems, the Longest

Chain Rule (LCR) stipulates that the canonical chain is

the sequence of valid blocks with the most work (often

referred to as the longest chain or, more accurately, the

heaviest chain) [4]. BlockReduce follows a similar rule

but must also account for the existence of coincident

blocks within the hierarchy.

Before defining the Hierarchical Longest Chain Rule

(HLCR), we first define what conditions a block must

meet to be considered valid. While specific requirements

may vary between implementations, such as varying

block size, transaction and/or smart contract structure,

or block header composition, in general we can define a

valid block as follows.

Protocol Rule 2 (Valid Block). A block is considered

valid if it meets all protocol rules and all of its prede-

cessors (of any order) are also valid.

In other words, a valid block must conform to the rules

of the blockchain and must reference no prior blocks

which deviate from those rules. Importantly, because a

coincident block has a predecessor at multiple orders,

if any of its predecessors are invalid then the block is

also invalid. This guarantees that a coincident block is

either valid in all blockchains for which it meets the

difficulty requirement or none of them. Next, we define

the HLCR which miners use to determine the canonical

chain in BlockReduce.

Protocol Rule 3 (The Hierarchical Longest Chain Rule).

The canonical chain of the root blockchain B{1} is the

heaviest sequence of valid blocks in B{1}. The canonical

chain of any blockchain B~v of order greater than 1

is the heaviest sequence of blocks which contains all

coincident blocks between B~v and parent(B~v) which are

present in the canonical chain of parent(B~v), and no

coincident blocks between B~v and parent(B~v) which are

not present in the canonical chain of parent(B~v).

In other words, the canonical chain for the root

blockchain is selected via the standard LCR. For each

other blockchain B~v of order greater than 1, the canon-

ical chain must include all coincident blocks that are

shared between B~v and parent(B~v) that are present in

the canonical chain of parent(B~v). However, if there is

some coincident block between B~v and parent(B~v) that

is not in the canonical chain of parent(B~v), then it cannot

be in the canonical chain of B~v .

If an incoming block causes the canonical chain to

change, then the state updates dictated by blocks which

are no longer part of the canonical chain must be reverted

and the new state updates applied. This is why the

canonical chain must contain all coincident blocks that

are shared with the parent blockchain, as otherwise a

cross-blockchain state transition which has been applied

at both origin and destination could later be reverted

at the origin but not the destination, thus causing an

inconsistency in the overall network state.

E. Inter-Blockchain Ordering via Coincident Blocks

Within a single blockchain, all blocks in the canonical

chain are totally ordered according to their distance

from the genesis block. Between blockchains of different

orders, blocks are partially ordered due to the coincident

blocks which arise from merged mining.

Intuitively, a coincident block serves as a shared point

in “time” between blockchains, allowing nodes to agree

upon which blocks came “before” the coincident block

and which blocks came “after.” For example, in Figure

3, nodes in N{1,1} which have received block B4 can

all agree that block B3 came before B4 even if they are

not mining B{1,1,1}.

This property of coincident blocks allows all nodes

in both N~v and parent(N~v) to agree on the existence

and ordering of all blocks prior to the coincident block

in either blockchain. In Section IV-G, we show that

this enables cross-blockchain state transitions to occur,

as nodes operating the destination blockchain can agree

on precisely if and when the state transition should be

applied to the destination state.

F. Inherited Work via Coincident Blocks

We argue that, for the sake of short term settlement,

blocks containing transactions of low economic value

may be secured with a fraction of the maximum work

available to the network, as the potential economic loss



from a successful attack is small. However, in the longer

term, this security level is not sufficient. If a block

containing a cross-blockchain state transition were to be

removed from the canonical chain of B ~vo , but the state

transition for that transaction had already been applied

to S ~vd , then an inconsistency in the overall application

state might arise.

The HLCR prevents this type of inconsistency by

requiring that the canonical chain of a child blockchain

must contain any coincident blocks that are shared with

its parent blockchain, regardless of the number of blocks

in any competing fork. In other words, a coincident

block is removed from the canonical chain of N~v if

and only if it is first removed from the canonical chain

of parent(N~v). The result is that N~v inherits the work

applied to parent(N~v), because an adversary attempting

to remove the block from N~v would need to have

sufficient mining power to remove it from parent(N~v).

G. State Updates

In order to guarantee consistent application state be-

tween nodes, it is sufficient that all nodes in N~v agree

on the initial state (which can be defined in the genesis

block) and then apply the same state updates to S~v in

the same order. This is simple for transactions with the

same origin and destination, as the state updates can be

applied in the order that they are referenced by that

blockchain. For transactions with different origin and

destination, the state transition must be handled in two

steps. First, S ~vo is updated according to the transaction

(e.g., the removal of an asset from the origin state) as

soon as it is included in a block in the canonical chain

of B ~vo . S ~vd , however, cannot be updated immediately,

as there is initially no way for nodes operating B ~vd to

agree upon when the state transition should be applied.

Protocol Rule 4 describes the criteria which must be met

for a state transition to be applied to S ~vd , and Protocol

Rule 5 describes the order in which all state updates are

applied when a block is processed.

Protocol Rule 4. Let tx be a transaction with origin

~vo and destination ~vd, and let ~va be the highest order

common ancestor between ~vo and ~vd. The state transi-

tion pertaining to S ~vo is applied as soon as the block

containing tx is a part of the canonical chain of B ~vo .

The state transition pertaining to S ~vd , however, is only

applied after a coincident block is found which is shared

by B ~vo and B ~va
and, if order(B ~vd) > order(B ~va

), a

subsequent coincident block is found which is shared

by B ~vd and B ~va
.

Intuitively, a chain of coincident blocks must be

constructed which link ~vo and ~vd through predecessor

references, and if ~vo and ~vd are in different branches of

the tree, the chain must travel “up” and then “back down”

the hierarchy until that chain is established. Nodes in

N ~vd can verify that the block containing tx is in the

canonical chain of B ~vo because of the coincident block

between B ~vo and B ~va
, and they can also agree upon the

existence of the coincident block between B ~vd and B ~va

and the updates to S ~vd which result from that coincident

block.

The next rule defines the order in which eligible state

updates are to be applied, as all nodes must apply updates

in the same order to guarantee consistent state.

Protocol Rule 5. The state transitions for a given block

B in B~v are applied to S~v in the following order. First, if

B is a coincident block, all transactions with destination

~v which are eligible to be applied to S~v according to

Protocol Rule 4 are applied in order by highest origin

order to lowest origin order. Transactions with the same

origin order are applied in order of the blockchain index

(i.e., from left to right in the tree) at that order, and

transactions with the same origin index are applied in

chronological order according to their inclusion in their

origin blockchain. After that, all transactions directly

referenced by B are applied to S~v in the order in which

they are referenced by B.

Protocol Rules 3, 4, and 5 guarantee that all nodes

in the same sub-network perform state transitions in the

same order, meaning any two nodes which agree on the

canonical chain will have consistent local state. This is

formalized by Theorem IV.1.

Theorem IV.1. For any given blockchain B~v , any two

correct nodes in N~v which agree on the canonical chain

of B~v will agree on S~v .

We prove Theorem IV.1 inductively, first remarking

that any two correct nodes must agree upon the genesis

block and the associated state when the blockchain is

instantiated. We then show the inductive step—for each

block in the canonical chain of B~v , both nodes must

apply the same state updates to S~v and in the same order.

We prove this via contradiction, showing on a case by

case basis that regardless of the origin and destination of

a transaction, if one node applies the state update for that

transaction and the other does not, then at least one of the

nodes breaks a protocol rule. Therefore both nodes agree

on the initial state and each subsequent state update, and

the statement follows. Due to space constraints, we omit

the full proof from this paper.

As a corollary of Theorem IV.1, all correct nodes

in N{1} which agree on the canonical chain of B{1}

also agree on S{1}. This ensures that all nodes in the

system agree upon the state of the root blockchain in

BlockReduce, thereby achieving similar guarantees to

that of a single-blockchain system.



V. ANALYSIS

In this section we show that BlockReduce achieves

transaction throughput that scales superlinearly with the

number of blockchains in each order.

A. Decreased Propagation Delay via Network Partition-

ing

Sub-networks of order r > 1 (i.e., all but the root sub-

network) have a network delay ∆r which is strictly less

than ∆1, where ∆1 is analagous to the ∆ experienced

by a traditional blockchain operated by a full network

of N nodes. This is due to the decreased size of the

sub-networks and the ability for nodes to select the sub-

network with which they share low-latency peer connec-

tions in order to reduce the overall block propagation

time that they experience.

It is clear from Equation 3 that a smaller network

naturally has lower propagation delays than a larger

network. In order to enhance this intuition, if we assume

that there are q sub-networks of order r and each sub-

network is of equal size, then we can bound ∆r as

follows:

∆r < δrCd ln
(N

q

)

(4a)

< ∆1 − δrCd ln q (4b)

Then the propagation delay for any order will be

strictly increasing with the number of sub-networks in

that order.

Additionally, we remark that under the distribution of

node-to-node latencies in Bitcoin as measured by [15],

latency between nodes can vary significantly from one

pair to the next. We assume that in the absence of a

protocol mechanism requiring nodes to join a particular

sub-network, each node will elect to mine in the sub-

network which minimizes their peer-to-peer latencies to

reduce the probability that their blocks are lost due to

network forks. As a result, we argue that in each sub-

network of order greater than 1, the average per-link

propagation delay δr between nodes in order r sub-

networks will be smaller than the delay between nodes in

N{1}—i.e., δr < δ1 for all r > 1. While we do not use

this result in our proof, it nonetheless further supports

the claim in Theorem V.1.

Overall, the network propagation delay within each

sub-network will be much smaller than that of the

network as a whole (i.e., the network delay of a similar

system such as Bitcoin), and as a result the rate of block

generation can be much higher within each sub-network.

B. Aggregate Throughput

In this section, we show that within each order in the

hierarchy, the total transaction throughput increases as

the number of blockchains in that order increases even

if the PoW efficiency remains fixed for each blockchain.

Moreover, we show that the increase is superlinear with

the number of blockchains in each order, as each addi-

tional blockchain further partitions the network and thus

reduces the propagation delay experienced by nodes in

each sub-network. We state this property of BlockReduce

more formally in the following theorem.

Theorem V.1. The aggregate transaction throughput of

each order in the BlockReduce protocol scales super-

linearly with the number of blockchains in that order,

and all blockchains in the hierarchy have identical PoW

efficiency.

We prove this theorem by showing that the effective

block generation rate of an order r > 1 blockchain grows

as the number of order r blockchains increases.

Proof. Recall that λr is the total block generation rate

of a blockchain of order r, then the effective block

generation rate is λ∗
r = λr

1+λr∆r

, and the PoW efficiency

is Er = 1
1+λr∆r

. It suffices to show that if q is the

number of blockchains of order r, λ∗
r increases as q

increases.

We hold the PoW efficiency fixed between all

blockchains to that of the root blockchain, i.e.,
1

1+λ1∆1

= 1
1+λr∆r

Substituting the results from Equa-

tion 4, we get

1

1 + λ1∆1
>

1

1 + λr(∆1 − δrCd ln q)
, (5)

which simplifies to

λr >
λ1∆1

∆1 − δrCd ln q
. (6)

Then the effective block generation rate—i.e., the rate

at which blocks are appended to the canonical chain—

for an order r blockchain with the same PoW efficiency

as that of the root blockchain is

λ∗
r >

λ1∆1

(∆1 − δrCd ln q)(1 + λ1∆1)
. (7)

Clearly, the right hand size of this equation increases

with q, meaning λ∗
r does as well. Then because all blocks

are assumed to contain the same number of transactions,

the statement follows.

VI. DISCUSSION AND FUTURE WORK

BlockReduce is a PoW-based blockchain system

which achieves high transaction throughput through a

hierarchy of merged mined blockchains which each

operate a partition of the overall application state in

parallel. Critically, the full PoW available to the net-

work is applied to all blockchains in BlockReduce, and



cross-blockchain state transitions are enabled seamlessly

within the core protocol. In this section, we highlight

several discussion points and avenues for future work.

1) Self-selection of sub-network participation.: Min-

ing nodes in BlockReduce are allowed to mine any

vertical slice of blockchains within the PoW hierarchy

tree. However, because the vast majority of miners in

any PoW blockchain are economically motivated, most

miners will elect to mine the blockchains which grant

them the highest rewards. In this way, blockchains within

each order will be self-balancing as miners naturally

drift towards any available blockchains with reduced

competition. In the absence of competitive advantage in

mining power, miners will elect to mine the blockchains

with which they share the lowest latency connections in

order to minimize the probability that their blocks are

lost to network forks. We believe that this alignment of

incentives should result in the formation of low-latency

clusters of mining nodes which are able to achieve very

high PoW efficiency, although we leave the construction

of a suitable incentive mechanism and a game-theoretical

analysis to future work.

2) Low-value transaction security and settlement time

tradeoffs.: BlockReduce users have a high degree of

flexibility when transacting, as they can control both

the short-term security and the settlement time of their

transactions by selecting which blockchain to transact

in. Higher order blockchains have low settlement times

and low security in the short term, as the sub-networks

operating these blockchains have a high block generation

rate but only control a fraction of the overall mining

power. This is ideal for transactions of low economic

value, as the consequence of a low-value transaction

being removed from the canonical chain is minor. Users

desiring a higher degree of security might elect to

transact in lower order blockchains in order to utilize

a larger fraction of the PoW of the network despite the

tradeoff of longer settlement times. The precise charac-

terization of this tradeoff will be specific to a particular

implementation, and it is likely that any BlockReduce

implementation will provide a default wallet which is

capable of selecting the appropriate transaction location

in an automated fashion.

3) Expected hierarchy structure and future implemen-

tation.: Although we have designed BlockReduce to

support an arbitrary hierarchy tree, real-world hardware

and network infrastructure as well as timing require-

ments of a functional blockchain network will limit both

the number of orders and the number of blockchains per

order that are realizable in practice. As the number of

blockchains in the BlockReduce hierarchy increases, the

time required for a cross-blockchain state transition also

increases due to the decreasing relative frequency of co-

incident blocks linking each blockchain. For example, if

a blockchain B has 3 child blockchains, then an average

of 1 in every 3 blocks in B will be coincident with each

child blockchain. If this number increases to 100 child

blockchains, the expected time required for a coincident

block to be found with one particular child increases

dramatically. Implementation and empirical testing will

be required to determine the optimal configuration for

any given use case and network topology.

4) Conclusion: We presented BlockReduce, a

blockchain system which operates a hierarchy of

blockchains in parallel, and showed that BlockReduce

achieves transaction throughput that scales superlinearly

with the number of blockchains operated by the system

without reducing the security of each transaction.
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