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Abstract—There is growing interest in providing programmatic
access to the value locked in Bitcoin, which famously offers
limited programmability itself. Various approaches have been
put forth in recent years, with the vast majority of proposed
mechanisms either building new functionality on top of Bitcoin or
leveraging a bridging mechanism to enable smart contracts that
make use of “wrapped” bitcoins on entirely different platforms.

In this work, an architecture is presented that follows a differ-
ent approach. The architecture enables the execution of Turing-
complete Bitcoin smart contracts on the Internet Computer (IC),
a blockchain platform for hosting and executing decentralized
applications. Instead of using a bridge, IC and Bitcoin nodes
interact directly, eliminating potential security risks that the use
of a bridge entails. This integration requires novel concepts, in
particular to reconcile the probabilistic nature of Bitcoin with the
irreversibility of finalized state changes on the IC, which may be
of independent interest.

In addition to the presentation of the architecture, we provide
evaluation results based on measurements of the Bitcoin inte-
gration running on mainnet. The evaluation results demonstrate
that, with finalization in a few seconds and low execution costs,
this integration enables complex Bitcoin-based decentralized
applications that were not practically feasible or economically
viable before.

I. INTRODUCTION

Despite significant advances in blockchain technology over

the past decade, Bitcoin is still the most well known decen-

tralized platform, commanding a large share of the market

across all projects in the blockchain space. However, in stark

contrast to other cryptocurrencies, Bitcoin funds hardly appear

in smart contracts [1], decentralized computer programs that

automatically and deterministically execute their logic based

on predefined conditions, due to the restricted expressiveness

of Bitcoin’s scripting language. While the idea and possibility

to create (simple) Bitcoin smart contracts has been around at

least since 2011, this topic has garnered considerable attention

in recent years and much effort has been expended with the

goal to deliver powerful, general-purpose smart contracts for

Bitcoin. Examples for such contracts include decentralized

payroll or escrow systems, wallets, and applications for yield

farming, lending and borrowing, as well as liquidity provision.

Ideally, a smart contract platform for Bitcoin provides the

following properties.

• Read and write: Smart contract decisions can depend on

the Bitcoin blockchain’s state and write to it.

• Security and trust: Correct behavior as long as a super-

majority of the entities involved adheres to the protocol.

Fig. 1: Architecture overview: IC node machines obtain blocks

from the Bitcoin network and pass them through the ICP stack

to the Bitcoin canister, which makes the Bitcoin blockchain

state available to other canisters. Canisters can hold bitcoins

natively and let node machines sign Bitcoin transactions on

their behalf and forward them to the Bitcoin network.

• Efficiency: Typical user requests can be processed quickly

(in the order of seconds, not minutes) at reasonable costs

(fractions of cents, not several U.S. dollars).

Existing approaches to enable Bitcoin smart contracts, other

than the presented architecture, fail to achieve all three of

them. Solutions extending Bitcoin directly are inherently slow

and expensive. Integrating Bitcoin functionality in another

platform naturally requires reliable and secure access to the

Bitcoin blockchain state. A customary approach to intercon-

nect distinct blockchains is the use of so-called bridges, which

are (centralized or decentralized) third-party platforms that act

as intermediaries. A typical use case of a bridge is to make an

asset, such as a cryptocurrency, of one blockchain accessible

on another. However, adding a bridge introduces a dependency,

which needs to be trusted and increases the attack surface.

Since bridges have been marred by hacks that led to losses in

the order of hundreds of millions [2], an integration without

any reliance on bridges is preferable from a security point of

view. Proposed solutions without bridges either fail to provide

a mechanism to read and write Bitcoin state directly, introduce

https://arxiv.org/abs/2506.21327v2


security vulnerabilities, or are expensive and slow; see §V for

a more in-depth discussion.

The architecture introduced in this paper provides support

for Bitcoin smart contracts on the Internet Computer (IC)1.

The motivation for this choice is manifold: First, the IC

protocol suite (ICP stack) provides strong security guaran-

tees as it can sustain a theoretically optimal upper bound

on the number of malicious nodes and it maintains state

integrity even under asynchrony (whereas liveness requires

partial synchrony). Moreover, it provides a smart contract

execution environment that is efficient both in terms of speed

and cost, and it allows smart contracts, called canisters on

the IC, to store large amounts of data. As we will see, our

architecture leverages the latter capability to hold the sizable

Bitcoin blockchain state. Additionally, it offers a high degree

of scalability, which is needed to support a large number

of Bitcoin smart contracts. Lastly, smart contracts interacting

with the Bitcoin network must be able to create ECDSA or

Schnorr signatures, which underpin the security of Bitcoin.

The IC implements both threshold ECDSA [3] and threshold

Schnorr protocols that are secure under asynchrony, providing

canisters with public keys for both schemes and the ability to

sign arbitrary data under those keys.

In our architecture, IC nodes and Bitcoin nodes commu-

nicate directly, obviating the use of any additional infras-

tructure. The Bitcoin adapter, introduced in §III-B, is the

novel component that enables the direct interaction between

the two networks. This integration at the node level is used

to send transactions—making use of the threshold-signing

functionality exposed to smart contracts on the IC—to the

Bitcoin network and to ingest Bitcoin blocks as shown in

Figure 1. The Bitcoin blockchain state is maintained in a

specific smart contract, called the Bitcoin canister, presented

in §III-C, which is an unprecedented approach given its sheer

size. Other canisters can learn about the current state of the

Bitcoin blockchain and send transactions by interacting with

the Bitcoin canister through a simple interface.

Although the IC has various features that facilitate cross-

chain integrations, many challenges had to be tackled. In

particular, Bitcoin and the IC exhibit many fundamental dif-

ferences: Bitcoin only has probabilistic guarantees about the

blockchain state and requires strong synchronicity assumptions

regarding message transmissions. By contrast, the IC ensures

that state change operations are never rolled back once fi-

nalized. Moreover, the IC only requires sporadic periods of

synchronicity for liveness as mentioned above. In short, the

architecture must ensure that there is always deterministic

agreement on the probabilistic state of the Bitcoin blockchain.

To this end, new notions of stability of the Bitcoin blockchain

state are introduced, which are used extensively in the archi-

tecture and are essential for its security.

The paper is structured as follows. Background information

about both blockchains and definitions are provided in §II.

The main contribution of this work is the architecture itself,

1See https://internetcomputer.org/.

which is presented in detail in §III. The evaluation in §IV

consists of a discussion of security considerations (in §IV-A)

to elucidate crucial aspects of the architecture design and a

presentation of measurement results of the live system running

on IC mainnet (in §IV-B). Related work is summarized in §V

and §VI concludes the paper.

II. BACKGROUND AND DEFINITIONS

A. Background on the Internet Computer (IC)

We briefly present the IC Protocol (ICP) stack. The IC

whitepaper [4] provides a more comprehensive introduction.

Objective. The IC aims to provide efficient multi-tenant,

general-purpose, and secure computation in a decentralized

and geo-replicated manner. In short, it is a blockchain-based

platform for the execution of smart contracts called canisters.

Canisters are the smallest units bundling logic and state,

allowing for parallel execution. In response to a message that

a canister receives from a user or another canister, a canister

executes its logic, which may trigger the transmission of

messages, modification of its internal state, or the creation of

other canisters. Moreover, canisters can schedule the execution

of (parts of) their own code using timers, in contrast to

most other smart contract platforms where execution can only

be triggered by users. All canisters are hosted on dedicated

individually untrusted nodes running the ICP stack.

Subnets. The nodes are partitioned into subnets, each subnet

providing blockchain-based state machine replication [5] for

the set of canisters deployed on it and connecting to nodes

in other subnets to enable communication between canisters

hosted on different subnets. Each node in a subnet runs all

the canisters deployed on that subnet. There are subnets with

100,000+ canisters and subnets with just a handful of canisters.

Subnets consist of 13-40 nodes spread across the Americas,

Europe, and Asia. Node providers and the location of their

nodes are public, thus a high degree of fault tolerance can be

achieved with relatively low replication factors.

Adversarial model and fault tolerance. The IC is designed

for Byzantine fault-tolerance, i.e., faulty nodes may deviate

in arbitrary ways from the IC protocol, accounting for bugs,

outages, as well as outright malicious behavior by colluding

nodes. In any given subnet with n = 3f + 1 nodes, at

most f nodes may be faulty. This is the highest number that

can be tolerated without additional assumptions on failures

and message delivery [5], [6]. The IC consensus protocol [7]

guarantees safety under asynchronous network conditions.

Layers. The ICP stack consists of four layers. The network-

ing layer disseminates protocol and user-generated messages.

Message validation and ordering is handled by the consensus

layer. The message routing layer ensures that messages end

up at the right canister and are scheduled deterministically.

The execution layer triggers the deterministic execution of the

canisters deployed on the IC and persists the state changes.

Deterministic finalization. Once the IC consensus proto-

col [7] reaches agreement on the next block (containing

messages from users and canisters on other subnets) to be

added to the subnet’s blockchain, the block is considered



Fig. 2: (1) The Internet Computer Protocol (ICP) partitions its

nodes into mutually disjoint subnets. (2) The nodes of each

subnet run a stack of protocols for state machine replication

to execute canister smart contracts.

finalized. Since this decision is irreversible, the block content

is guaranteed to be processed by the message routing layer

and forks are impossible. Thus, finalization is deterministic.

Figure 2 depicts the structure of the Internet Computer,

comprising multiple subnets with each subnet consisting of

a replicated state machine run on multiple nodes.

B. Background on Bitcoin

Bitcoin is a cryptocurrency operated by a decentralized peer-

to-peer (P2P) network. Bitcoin transactions are used to transfer

bitcoins from at least one party to one or more parties. Each

transaction produces a set of outputs, which consist of a value,

i.e., the amount of bitcoin, and a locking script defining the

conditions to spend this output. The inputs are simply previous

outputs that are spent entirely in this transaction.

Since all inputs are fully consumed in a transaction, trans-

ferring the bitcoins to the outputs (minus a transaction fee), all

spendable bitcoins are held in the unspent transaction output

(UTXO) set. Thus, knowledge of the UTXO set suffices to

determine the balance of any Bitcoin address.

Bitcoin transactions are processed in batches called blocks,

each block referencing a specific predecessor block. A block

is only valid if its hash, interpreted as a large number, is at

most a certain target value. Let H denote the hash function

used in Bitcoin, which is the SHA-256 algorithm applied to

the block and then again to the resulting hash. A numerically

small H(b) implies a high level of difficulty to find such a

block by varying block metadata and shuffling transactions.2

The difficulty target to create a block is adaptive and ensures

that a large computational effort is required to create a block

with 10 minutes between block creation on average, giving

the network sufficient time to disseminate newly found blocks.

The aforementioned transaction fee of every transaction in a

block goes to the party that computed the block.

2See https://en.bitcoin.it/wiki/Difficulty.

Multiple blocks may reference the same predecessor block,

inducing a directed tree of blocks with the root being the

genesis block. Let B denote the tree of all blocks available

at some peer. Peers may have slightly different views and the

following definitions always refer to a local view. Given the

set B of blocks, the height h(b) of block b ∈ B is the number

of predecessor blocks, terminating at the genesis block bg with

height h(bg) = 0. While there is only one path from any block

to the genesis block, a block may have multiple successors.

Let succ(b) denote the set of successors of block b. A depth

function d measures the maximum cumulative cost from a

given block b to any of the tips (i.e., leaves) that are connected

to b using a cost function c : B → R:3

d(b) :=

{

c(b) succ(b) = {}

c(b) + maxb′∈succ(b) d(b
′) otherwise

Since a block b is always associated with a block header β,

the height and depth functions can be applied to block headers

as well, i.e., h(b) = h(β) and d(b) = d(β) for a block b and

the associated block header β. For a given tree B, we further

define that d(B) := d(bg), which states that the depth of the

blockchain corresponds to the depth of its genesis block.

We introduce two specific depth functions: The first function

dc measures the maximum “distance” of a block b to the

tips, i.e., c(b) := 1 for all b ∈ B. The function dc is

related to the concept of confirmations in Bitcoin. Once a

transaction appears in a block, the transaction is said to have

one confirmation, and the confirmation count increases with

each appended block. If a transaction in a block b has c
confirmations, then dc(b) = c. Let w(b) denote the hash

work expended to create block b. Technically, w(b) > w(b′)
if H(b) < H(b′). The second function dw determines the

maximum amount of hash work over all paths between b and

connected tips, i.e., c(b) := w(b) for all b ∈ B. The function

dw(b) determines the current blockchain, which is the chain

of blocks from the genesis block to a tip that maximizes the

sum of expended hash work. Formally, the current blockchain

is the chain of blocks [b0 = bg, b1, . . . , bk], bi ∈ succ(bi−1)

for all i ∈ {1, . . . , k}, such that
∑k

i=0 dw(bi) = dw(B).
More details on the Bitcoin protocol can be found online.4

C. Novel Concepts

In addition to the definitions in §II-B, we introduce our

own concepts that address the lack of deterministic finality in

Bitcoin. As mentioned before, the knowledge of the UTXO

set suffices to determine the balance of any Bitcoin address;

however, it is possible that a different chain (i.e., a fork)

becomes the current blockchain, invalidating all blocks on the

former blockchain between its tip and the block where the

two chains diverged. While such reorganizations have become

increasingly rare, it is nevertheless a risk, in particular for a

smart contract that cannot be updated easily.

3In graph theory, the definitions of height and depth are reversed. We use
the terminology commonly found in Bitcoin literature.

4See https://en.bitcoin.it/wiki/Protocol documentation.
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Fig. 3: A blockchain with two forks is shown with the

confirmation-based stability indicated inside each block.

Since there is no deterministic finality, a weaker notion of

“stability” is introduced, which can be motivated as follows. It

is evident that a higher block depth (for either depth function)

implies a higher chance that a block will persist. This is a

necessary but not sufficient condition when considering that

there can be competing forks growing at a similar rate: even

if a block has a high block depth, another block might exist at

the same height with a higher block depth. Thus, a block must

have a sufficiently higher block depth than any other block at

the same block height. Both conditions are captured in the

following definition.

Definition II.1 (δ-Stability). Given a depth function d : B →
N0, a block b ∈ B is δ-stable if

1) d(b) ≥ δ and

2) ∀b′ ∈ B \ {b}, h(b′) = h(b) : d(b)− d(b′) ≥ δ.

For any δ > 0, the definition implies that there can be only

one δ-stable block at any height h, making it possible to extend

the definition to block heights: height h is δ-stable if there is

a block b such that h(b) = h and b is δ-stable. It also follows

that a δ-stable block is δ′-stable for any δ′ ≤ δ. Given a certain

depth function, the stability of a block b is the largest δ for

which it is δ-stable.

Definition II.1 can be instantiated with either depth function

introduced in §II-B, serving different purposes. When using

the depth function dc to count confirmations, we call it

confirmation-based (δ-)stability. More precisely, a transaction

in a block b is considered to have c confirmations if the

confirmation-based stability of b is c. By contrast, difficulty-

based (δ-)stability, which applies the depth function dw, is

used to determine if a block is “stable enough” in the sense

that it will persist with high probability. More precisely, the

difficulty-based stability dw(b) is expressed relative to the

difficulty of a particular block b∗, i.e., dw(b)/w(b
∗), to be

able to specify a threshold δ that is independent of current

difficulties. We say that block b is difficulty-based δ-stable with

respect to b∗ if dw(b)/w(b
∗) ≥ δ. Details about the usage of

these concepts are presented in §III-C.

An example block tree is depicted in Figure 3 with blocks

at the same height in the same horizontal position (and block

heights increasing from left to right). The number in each

block indicates its confirmation-based stability. The figure

shows show that the stability of a block may stagnate even

when its block depth increases. Another observation is that

the stability of a block is negative when it is on a fork that

is shorter than the longest chain. While these concepts do not
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Fig. 4: Overview of the Bitcoin integration on the IC.

exist in Bitcoin, it is worth noting that they merely introduce

conservative rules to deal with forks. In the absence of forks,

the rules are equivalent to the standard definitions in the sense

that confirmations are counted and the current blockchain is

determined in the same way as customary in Bitcoin.

III. ARCHITECTURE

A. Overview

The functionality to implement Bitcoin smart contracts on

the Internet Computer hinges upon two core building blocks.

The first one enables IC nodes and nodes in the Bitcoin P2P

network to interact directly: the Bitcoin adapter is introduced

at the networking level, running alongside the main IC process

and connecting to nodes in the Bitcoin network. The Bitcoin

adapter both ingests updates about the Bitcoin blockchain state

(in the form of Bitcoin blocks) and transmits state changes

to the Bitcoin network (in the form of Bitcoin transactions).

As mentioned in §I, this mechanism fundamentally differs

from the commonly employed approach to overcome the siloed

nature of blockchains using bridges.

The second building block provides an interface for canis-

ters to read from and write to the Bitcoin blockchain. Running

on top of the IC stack, the Bitcoin canister is responsible to

keep track of the Bitcoin blockchain state. Other canisters can

interact with the Bitcoin canister through its API in order to get

information about the Bitcoin blockchain as well as transmit

Bitcoin transactions to update the Bitcoin blockchain state.

Figure 4 provides an overview of the architecture. The

(sandboxed) Bitcoin adapter communicates with the Bitcoin

network and the Bitcoin canister, interfacing at the ICP

networking layer. The execution layer executes the Bitcoin

canister, which processes requests from other canisters, e.g.,

requests to get the UTXOs of a Bitcoin address or to send a

Bitcoin transaction to the Bitcoin network.

B. Bitcoin Adapter

The objective of the Bitcoin adapter is to enable two-way

communication between the Internet Computer and the Bitcoin

network without any intermediaries. The Bitcoin adapter is

a sandboxed OS-level process that can be instantiated on

every IC node. It communicates with the main IC process

using standard inter-process communication. The source code,

roughly 6000 lines of Rust code, resides in the IC repository.5

5See https://github.com/dfinity/ic/tree/master/rs/bitcoin/adapter.



In some sense, the Bitcoin adapter is akin to a simplified

payment verification (SPV) Bitcoin client.6 The main differ-

ence to a standard SPV client is that the Bitcoin adapter

is geared towards providing information about the Bitcoin

blockchain state to the Bitcoin canister, interacting with Bit-

coin nodes using the Bitcoin P2P protocol and a bespoke

protocol for the communication with the Bitcoin canister.

Connectivity to the Bitcoin network. Given a hard-coded

list of DNS seed nodes—the same seed nodes as used by

bitcoind—, the Bitcoin adapter attempts to connect to a

configurable number ℓ (= 5 on mainnet) of randomly chosen

Bitcoin nodes using the following discovery process. At start-

up, the Bitcoin adapter recursively requests IP addresses of

Bitcoin nodes until the number of collected addresses reaches

a certain upper threshold tu. Once the threshold is reached, the

Bitcoin adapter chooses Bitcoin nodes uniformly at random

from the list of collected addresses and tries to establish ℓ
connections. Whenever a connection is lost, a new random

connection is established. If the number of available IP ad-

dresses drops below a lower threshold tl, the Bitcoin adapter

requests more addresses until its size reaches tu again. The

parameters tl and tu are set to 500 and 2000 for mainnet,

100 and 1000 for testnet, and tl = tu = 1 for regtest (for

local testing). Experiments showed that these numbers (for

mainnet and testnet) result in mostly disjoint sets of connected

Bitcoin nodes at every Bitcoin adapter for common subnet

sizes of 13 to 40 nodes. The discovery process is skipped in

regtest mode because the IP addresses are pre-configured. If

tu addresses cannot be collected, the Bitcoin adapter remains

in the discovery state but provides its service to the Bitcoin

canister as long as there is at least one active connection.

It is worth noting that IC nodes only have IPv6 addresses

and therefore the Bitcoin adapter is restricted to interacting

with Bitcoin nodes accessible over IPv6. Many Bitcoin nodes

that have an IPv6 address are presumably dual-stacked, i.e.,

they are themselves connected over IPv4 to other nodes.7

We conjecture that the Bitcoin adapters connect to a fairly

unbiased random sample of Bitcoin nodes.

Interaction with the Bitcoin network. Once the Bitcoin

adapter is connected to at least one Bitcoin node, it downloads

the Bitcoin block headers, starting from the hard-coded genesis

block header. For each obtained block header, the Bitcoin

adapter verifies its validity, making sure that it is well-formed,

the hashPrevBlock field points to a locally available block

header, the Bits field contains the correct difficulty target,

the block header hash satisfies this target, and the Time field

contains a valid block timestamp.8 Any block header violating

some of these conditions is discarded.

The Bitcoin adapter does not perform any fork resolution,

i.e., it accepts and stores any valid block header, possibly mul-

tiple block headers at the same height. Adding fork resolution

6See §8 of the Bitcoin white paper at https://bitcoin.org/bitcoin.pdf.
7Unfortunately, there is no reliable way to verify this assumption. It is

reasonable to assume that the majority of node administrators do not configure
connectivity exclusively over IPv6.

8See https://en.bitcoin.it/wiki/Block timestamp.

Algorithm 1 Given Ba and Ba, process request (β∗, A, T ).

1: for tx ∈ T do

2: transaction_cache.add(tx)
3: end for

4: B := {}, B := {}, N := {}, βcur := β∗

5: while βcur 6= ⊥ and |N | < MAX_HEADERS do

6: if βcur /∈ A and βcur.prev ∈ A ∪ B then

7: bcur := get_block(βcur, Ba, h(β∗))
8: if bcur 6= ⊥ and size(B) < MAX_SIZE and

|B| < max_blocks_at_height(h(β∗), Ba)

then

9: B := B ∪ {(bcur, βcur)}, B := B ∪ {βcur}
10: end if

11: end if

12: if βcur /∈ A ∪ B then

13: N := N ∪ {βcur}
14: end if

15: βcur := bfs_next(βcur, Ba)

16: end while

17: return [B,N ]

logic would go against the goal of keeping the Bitcoin adapter

as lightweight as possible, leaving the task of resolving forks

and maintaining a correct state to the Bitcoin canister.

Interaction with the Bitcoin canister. The Bitcoin adapter

receives requests from the Bitcoin canister, which contain a

specific block header β∗ and a set A of block headers at

heights greater than h(β∗) for which the Bitcoin canister

has already obtained the blocks. Additionally, each request

contains a possibly empty list T of Bitcoin transactions that

are supposed to be transmitted to the Bitcoin network. Details

about the request parameters are provided in §III-C. Given

this information, the Bitcoin adapter aims to return blocks that

extend the Bitcoin canister’s chain (or tree). Additionally, it

sends a list of upcoming block headers, if any, to inform the

Bitcoin canister that more blocks need to be synced.

The algorithm is defined more formally in Algorithm 1. Let

Ba denote the set of locally available Bitcoin blocks and Ba be

the local block header tree. While Ba is extended continuously,

blocks are only added to or removed from Ba when handling

requests from the Bitcoin canister. Every outbound transaction

tx ∈ T is put into a transaction cache. Transactions in this

cache are advertised asynchronously to all connected Bitcoin

nodes and transmitted upon request. A transaction is kept in

the cache until transmitted to all connected peers or until

it expires after a certain time, configured to 10 minutes.

The expiry time ensures that memory is freed even if there

are connected Bitcoin nodes that do not request advertised

transactions. Given that there is generally no guarantee that

transactions are added to the Bitcoin mempool, this best-effort

strategy is acceptable.

After handling the transactions in the request, the Bitcoin

adapter traverses its block header tree Ba in a breadth-first-

search fashion (using the function bfs_next), starting at the



block header β∗. The block and block header pairs that will

be returned are collected in the set B, whereas set B is used

to collect only the block headers in set B. If the current block

header βcur is not in the set A and its predecessor βcur.prev
is in A or B, i.e., βcur follows a block header for which the

Bitcoin canister has the block or the corresponding block has

been collected already, the block bcur is retrieved using the

function get_block if available. If bcur is not available, it

is requested from the connected peers asynchronously so that

the block may be served in the response to a future request.

Otherwise, if the total size of blocks collected in B does not

exceed a certain maximum size (MAX_SIZE=2MiB) and the

total number of blocks in B is at most a certain upper bound

based on the height h(β∗), then (bcur, βcur) and βcur are

added to B and B, respectively. Note that MAX_SIZE is a

soft limit in that a block that exceeds this size is still added

to B. The maximum number of blocks is unbounded up to a

certain hardcoded height and then it is reduced to 1, i.e., only

a single block may be returned. Returning multiple blocks

speeds up the syncing process but returning only one block is

preferable for security reasons as discussed in §IV-A.

If the block is not available, βcur is added to the set N
of upcoming block headers before considering the next block

header. Block headers are added to the set N as long as its

size is below a configurable maximum size (MAX_HEADERS=
100 in production). If there are no more block headers to be

processed (βcur = ⊥) or the set N reaches the maximum size,

the Bitcoin adapter returns [B,N ] to the Bitcoin canister.

C. Bitcoin Canister

The Bitcoin canister is a smart contract that provides the

core Bitcoin functionality. It is a fairly complex smart contract

at approximately 10,000 lines of Rust code.9 As shown in

Figure 4, the Bitcoin canister enables other canisters to read

the Bitcoin blockchain state as well as writing to it.

Instead of storing the entire Bitcoin blockchain, which

would require several hundreds of gigabytes of storage space,

the Bitcoin canister merely stores the UTXO set. As discussed

in §II-B, the UTXO set is sufficient to derive the current

balance of any Bitcoin address while reducing the space

requirement. The downside of this approach is that fork

resolution becomes challenging as it is hard to undo updates

to the UTXO set.

State management. The Bitcoin canister uses the concepts

introduced in §II-C to deal with the probabilistic finality

in Bitcoin. Concretely, a block is considered stable if it is

difficulty-based δ-stable for δ = 144 on mainnet. As there are

144 Bitcoin blocks on average per day, unless the difficulty

target changes significantly, a block becomes stable after

approximately one day. Such blocks are expected to persist.

The block header β∗ at the greatest height that is considered

stable is called the anchor. The Bitcoin canister stores the

UTXO set U of the Bitcoin blockchain up to and including

the anchor height, whereas all block headers are stored in a

9See https://github.com/dfinity/bitcoin-canister.

Algorithm 2 Given U , T and β∗, process response (B, N ).

1: for (b, β) ∈ B do
2: if is_valid(b, β) and is_valid(β, T ) then
3: append(β, T )
4: b(β) := b
5: Bnext := {b(β) 6= ⊥ | β ∈ T , h(β) = h(β∗) + 1}
6: bnext := argmaxb∈Bnext

dw(b)
7: while dw(bnext)/w(β∗) ≥ δ do
8: β∗ := get_header(bnext)

9: process_block(U, bnext)

10: remove_blocks(T , Bnext)

11: Bnext := {b(β) 6= ⊥ | β ∈ T , h(β) = h(β∗) + 1}
12: bnext := argmaxb∈Bnext

dw(b)
13: end while
14: end if
15: end for
16: for β ∈ N do
17: if is_valid(β, v) then
18: append(β, T )
19: end if
20: end for
21: A := {β ∈ T | b(β) 6= ⊥}
22: synced := maxβ∈T h(β) −maxβ∈A h(β) ≤ τ

directed tree T . While conceptually the UTXO set U is simply

the set of all unspent transaction outputs, the implementation

uses a data structure with Bitcoin addresses as the index for

an efficient retrieval of all UTXOs associated with an address.

For heights greater than h(β∗), the Bitcoin canister addi-

tionally stores the corresponding blocks. The block for block

header β, h(β) > h(β∗), is denoted by b(β). If the block

is not available, then b(β) = ⊥. Since unstable blocks are

stored separately, both the UTXO set U and the unstable

blocks must be considered to determine the current UTXOs

of an address. Consequently, the computational complexity

to retrieve all UTXOs or compute the balance of an address

grows linearly with the parameter δ. Hence, there is a trade-off

between the computational complexity and security as a larger

δ makes it less likely that blocks at heights lower than h(β∗)
are affected by a block reorganization. Note that the Bitcoin

canister can cope with any block reorganization at heights

greater than h(β∗) automatically. Conversely, a reorganization

at a lower height would require a manual canister upgrade as

the UTXO set would need to be updated. Setting δ = 144
is a conservative choice, aiming for high security, i.e., a low

risk of being affected by a block reorganization, while still

guaranteeing a fast processing of requests.

Interaction with the Bitcoin adapter. The Bitcoin canister

periodically requests updates from the Bitcoin adapter by

sending a message containing the anchor β∗ and a list A of

the block headers in T for which it has already received the

corresponding blocks, i.e., A := {β ∈ T | b(β) 6= ⊥}. The

request also contains the set T of Bitcoin transactions that are

to be advertised to the Bitcoin network.

The response of the Bitcoin adapter is a set B, containing

pairs consisting of blocks and their headers, and a set N of

block headers. Algorithm 2 shows how the Bitcoin canister

handles a response (B,N ) received from the Bitcoin adapter.



For each pair (b, β) ∈ B, it is verified that both b and

β are valid. To this end, the Bitcoin canister performs the

same checks on the block headers as the Bitcoin adapter (see

§III-B). A block b is valid if the corresponding block header

β is valid and b is well-formed, β points to a predecessor for

which the block is available, and the Merkle tree root hash of

b is the hash in β. Furthermore, it is verified that β is a valid

extension of the block headers in T . Note that the validity of

the transactions is not verified. The Bitcoin canister relies on

the proof of work that goes into the blocks and the verification

of the blocks in the Bitcoin network. Transaction validation

is omitted because a bug in the transaction verification logic

is deemed a bigger security risk than relying on the vetting

of blocks in the Bitcoin network. Moreover, the notion of δ-

stability adds a level of protection against forks.

If both b and β are valid, β is added to T and b is stored.

Next, it is verified whether the addition of b renders any

block bnext at height h(β∗) + 1 difficulty-based δ-stable with

respect to b(β∗) in which case the block header of block bnext
becomes the new anchor. Whenever the anchor changes, the

UTXO set U and the tree T must be updated as well: The

UTXO set U is updated by processing the transactions in

bnext and then block bnext is discarded (i.e., β(bnext) := ⊥).

These steps are performed in a loop as more than one block

may become stable with the addition of a single block. Unlike

blocks, block headers are kept forever; however, if there are

multiple block headers at a stable height, all but the single

stable block header are removed from T . Finally, all validated

block headers in the received set N are appended to T .

Since it is risky to provide outdated information about the

blockchain state, the Bitcoin canister only responds to requests

if the maximum height in T does not exceed the maximum

height of available blocks by more than a parameter τ (= 2
in production). If this condition is not satisfied, the Bitcoin

canister replies with an error to each request. This mechanism

explains the addition of the block header set N to the response

of the Bitcoin adapter: it informs the Bitcoin canister about

missing blocks in a tamper-proof manner.

Application programming interface. The goal is to pro-

vide a simple, low-level interface that is powerful enough

to enable complex Bitcoin smart contracts. The two core

functions to read from and write to the Bitcoin blockchain

state are called get_utxos and send_transaction,

respectively. The API contains several additional functions,

such as a convenience function to get the balance of an address

(get_balance), which are omitted for the sake of brevity.

When calling the get_utxos endpoint, a Bitcoin address

and network (mainnet, testnet, or regtest) must be specified.

Optionally, a filter can be provided as well, which is either

a certain number of confirmations or a request for a specific

page. The response from the Bitcoin canister consists of a

set of UTXOs of the requested Bitcoin address for the given

network, the hash and height of the block header at the tip

of the considered chain, plus a next page reference, which is

non-empty if the response does not contain all UTXOs. This

pagination mechanism is required for addresses that hold a

large number of UTXOs. The UTXOs are returned sorted by

block height in descending order, ensuring the correctness of

the pagination mechanism.

As described in §II-C, the blockchain is defined as the

chain that maximizes dw(bg), where bg denotes the genesis

block. If the request specifies a minimum of c confirmations,

only confirmation-based c-stable blocks are considered. It is

important to note that requests for c > δ = 144 are rejected as

the returned set of UTXOs may not be correct in that case: It

is possible that the response is missing some outputs because

transactions that spend these outputs should not be considered

for the given choice of c; however, this information is not

contained in the UTXO set.

The send_transaction endpoint takes two parameters:

the serialized Bitcoin transaction and the target network. After

performing basic checks to ensure that the received bytes

encode a syntactically correct transaction, the transaction is

included in the set T of transactions that is forwarded to the

Bitcoin adapter as part of its regular update requests.

IV. EVALUATION

A. Security Considerations

The availability and integrity of the Bitcoin integration

functionality are the two crucial security considerations that

have guided the design of the architecture. The purpose of

this section is to illustrate which attack scenarios have been

considered and how they are mitigated.

We start by formally defining the assumptions with respect

to the attacker’s control over IC and Bitcoin nodes. Specifi-

cally, we consider a powerful attacker that can simultaneously

control a large fraction of all Bitcoin nodes and the Internet

Computer nodes. Moreover, the attacker has a large hash

power available so that it can create arbitrary Bitcoin blocks

for the same difficulty target as in Bitcoin mainnet, albeit

at a lower rate than the Bitcoin network itself. Rather than

specifying concrete parameters, we define the extent of the

attacker’s power in the course of this section, together with

explanations where necessary.

The Bitcoin canister runs in a subnet comprising n nodes,

where the Bitcoin adapter on each node connects to ℓ randomly

selected Bitcoin nodes. We make the standard assumption that

the attacker controls less than n/3 of these nodes. Let ϕ be

the fraction of Bitcoin nodes under the attacker’s control. In

order to cut off the Bitcoin canister from the Bitcoin network,

thereby preventing updates to the state in the Bitcoin canister,

the attacker must control a large share of all Bitcoin nodes,

which is deemed infeasible for practical values of n and ℓ.

Definition IV.1. For any subnet size n and number ℓ of links

from Bitcoin adapters to Bitcoin nodes, the fraction ϕ of

corrupted Bitcoin nodes is upper bounded by ϕ ≪ n−1/ℓ (1).

Given the large number of Bitcoin nodes, this assumption

easily holds for parameters used in practice, i.e., for n = 13
and ℓ = 5, the requirement is that ϕ ≪ 0.6. If a lower

constant bound on ϕ is required, it is always possible to set

ℓ ∈ Θ(log(n)), undershooting ϕ by any constant factor.



The Bitcoin canister makes progress as long as at least

one Bitcoin adapter is connected to at least one correct

Bitcoin node. Definition IV.1 implies that every Bitcoin adapter

connects to a correct Bitcoin node with high probability.

Lemma IV.1. If each Bitcoin adapter connects to ℓ Bitcoin

nodes uniformly at random, then every Bitcoin adapter con-

nects to a correct node with overwhelming probability.

Proof. The probability that a Bitcoin adapter connects only to

corrupted Bitcoin nodes is ϕℓ. Thus, the probability that it is

eclipsed is 1− (1− ϕℓ)n ≈ 1− e−nϕℓ (1)
≈ 1− 1 = 0.

If the Bitcoin canister is almost certain to remain connected

to correct Bitcoin nodes, an attacker can only try to corrupt

the state of the Bitcoin canister. As discussed in §III-B, the

Bitcoin adapter only accepts valid block headers and blocks,

which makes it impossible for an attacker to flood the Bitcoin

canister with invalid data.

Since the Bitcoin canister does not verify that the spending

conditions of transactions are satisfied, an attacker can attempt

to feed the Bitcoin canister valid blocks with manipulated

transactions. However, this is a costly attack as valid blocks

require a certain proof of work. Quite generally, there is always

a chance that the attacker mines a block before other miners,

even if the attacker’s hash rate is substantially smaller than the

total hash rate. As a result, it is necessary to wait for a certain

number of confirmations, reducing the risk of a reorganization

that removes the block containing the transaction in question.

By the same principle we define that any critical actions by

smart contracts that depend on the Bitcoin canister require c∗

confirmations, where c∗ is large enough so that the attacker is

not able to create a fork with a height that exceeds the “real”

blockchain’s height by c∗ at the same difficulty level, i.e., the

attacker may create a longer chain only at a reduced difficulty.

Definition IV.2. Given blockchain B of height h and a

constant c∗, the attacker’s hash rate is bounded so that the

height h′ of the attacker’s blockchain B′ is less than h+c∗ or

dw(B
′) < dw(B) at all times with overwhelming probability.

This is a reasonable assumption as otherwise the attacker

can launch (double-spend) attacks against any service that

works with Bitcoin, including centralized exchanges.

An attacker may attempt to corrupt the state of a smart

contract by manipulating the state of the Bitcoin canister such

that the attacker’s fork is considered to have c∗ confirmations.

This is infeasible under the assumption of Definition IV.2.

Lemma IV.2. The probability of a state corruption for Bitcoin

services on the IC requiring c∗ confirmations is negligible.

Proof. We assume that the attacker has the means to send any

(valid) block to the Bitcoin canister. Furthermore, we assume

that there is a corrupting transaction in a block b′ at a height

h′ on a forked chain B′ created by the attacker.

If this chain has a maximum height of hmax + c∗ instead

of the maximum height hmax of the real blockchain B, then

dw(B
′) < dw(B) due to Definition IV.2. Since difficulty-based

stability is used to identify the current blockchain, the Bitcoin

canister ignores the attacker’s fork and consequently does not

consider the corrupting transaction in any response.

If dw(B
′) > dw(B), the attacker’s chain has a maximum

height of less than hmax+c∗. If b′ has at least c∗ confirmations

on B′, it follows that h′ < hmax, i.e., there is a block b at

height h′ on the real blockchain B. Moreover, we have that

dc(b
′) − dc(b) < c∗, implying that b′ is not confirmation-

based c∗-stable. As confirmation-based stability determines the

number of confirmations, the Bitcoin canister never reports c∗

or more confirmations for the corrupting transaction.

Given a conservative upper bound on the hash power of the

attacker as specified in Definition IV.2, Lemma IV.2 illustrates

how the notion of stability helps to overcome the probabilistic

nature of Bitcoin. If δ is chosen large enough, the attacker

effectively requires a commanding share of all hash power

to launch an attack that causes a state corruption. In this

scenario, the attacker has the power to undermine the integrity

of most Bitcoin services. As mentioned before, δ = 144 is a

conservative choice, which means that the attacker must create

144 blocks more than the Bitcoin network over any period of

time to corrupt the Bitcoin canister state.

While the state of the Bitcoin canister is considered safe

when it is running and fully synced, there is added risk when

syncing the Bitcoin blockchain, either initially or after an

extended downtime of the Bitcoin canister, causing the Bitcoin

canister to be out of sync. It is important to note that the

latter situation has never occurred but security measures for

this possibility are in place nonetheless. If the attacker knows

that the Bitcoin canister will not sync beyond a specific block

height h∗ until time t and t lies sufficiently far in the future,

the attacker can use the time to build a fork of significant

length starting at height h∗ + 1 even if the attacker’s hashing

power is a small fraction of the total hashing power of the

Bitcoin network.10 The attacker would then try to get c∗ blocks

accepted by the Bitcoin canister before it learns about the

blocks on the real blockchain.

This risk is mitigated by the correct Bitcoin adapters, which

send the set N of block headers at greater heights in their

responses, ensuring that the Bitcoin canister does not enter the

synced state prematurely. Thus, even if the attacker manages to

serve the blocks on the fork, the Bitcoin canister does not act

upon them. Once the Bitcoin canister is synced, the attacker’s

fork will not be longer by c∗ blocks by assumption.

The risk is greater after a (hypothetical) downtime of the

Bitcoin canister. Since less than a third of the nodes in the

subnet might be malicious, the attacker may attempt to use

these nodes to ingest a fork of length at least c∗ as soon

as the Bitcoin canister is operational again. The consensus

algorithm of the IC ensures that the next block maker cannot

be predicted, and it is the block maker that proposes the IC

block containing the Bitcoin block. Thus, the attack succeeds if

malicious IC nodes are chosen as the block makers, forwarding

10For example, at 1% of the total hashing power, the attacker can mine 10
blocks in expectation in a week at the difficulty level of the Bitcoin network.
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space consumption is shown over the span of two years.

the blocks on the attacker’s fork to the Bitcoin canister while

claiming that there are no further block headers (i.e., N = {}).

Lemma IV.3. If the attacker controls f < n/3 nodes of the

subnet, the probability of a state corruption for the IC Bitcoin

services requiring c∗ confirmations after downtime is < 3−c∗ .

Proof. Since the Bitcoin canister only accepts one block at a

time, each malicious block maker can only deliver one block

on the fork to the Bitcoin canister. If there is any round where

a correct IC node is chosen as the block maker, it will provide

the list N of correct block headers as each Bitcoin adapter is

connected to correct Bitcoin nodes due to Lemma IV.1. Since

the maximum height of the attacker’s fork does not exceed the

maximum height of the real blockchain by more than c∗ − 1
by assumption, the attack only succeeds if malicious block

makers are chosen c∗ times in a row. As the attacker controls

less than n/3 IC nodes, the claim follows.

The probability of 3−c∗ may appear high for a customary

choice of c∗ but the attack also requires the corruption of many

IC nodes in addition to a predictable downtime of the Bitcoin

canister. As a result, such an attack is deemed highly unlikely.

B. Measurements

This section studies the resource consumption of the Bitcoin

canister deployed on IC mainnet and the interaction with the

real Bitcoin network, in terms of the state size and the number

of WebAssembly instructions required to maintain the state

and handle requests, as well as the latency experienced by

users when interacting with the Bitcoin canister. We omit a

discussion of throughput capacity due to space constraints and

the fact that capacity can be increased linearly on demand by

hosting Bitcoin canisters on more subnets.

Storage and block ingestion. The Bitcoin canister stores the

whole UTXO set. Thus, its storage requirement grows linearly

with the size of the UTXO set. By the end of March 2025, the

Bitcoin canister reached a size of more than 103 GiB, storing

more than 170 million UTXOs as shown in Figure 5. The

number of instructions executed for block ingestion varies with

the size of the block as evident in Figure 6. It is typically in

the order of 20 billion instructions, with roughly half of them

used for output insertions and input removals, respectively.

Latency and cost of handling requests. In order to evaluate

the time required to handle user requests and the resource

consumption measured in instructions, we conducted the fol-

lowing experiments on IC mainnet. We selected 1000 random

bitcoin addresses that appeared in blocks in Q1 2024 with a

positive balance. The distribution of their UTXO set sizes is

skewed with 517 having fewer than 50 UTXOs, 159 addresses

returning sets of 50-199 UTXOs, 113 addresses returning 200-

999 UTXOs, and 211 address having 1000 or more UTXOs.

For each of these addresses, we sent replicated balance and

UTXO requests to the Bitcoin canister and measured the

time to receive a response and the resource consumption. In

addition, we sent balance and UTXO query requests. Every

response to a query request comes from a single, randomly

selected node on the subnet and therefore cannot be fully

trusted. By contrast, the responses for the replicated requests

are threshold-signed by more than two thirds of the nodes of

the subnet. We repeated the experiments with different address

sets for the same time period and obtained similar results.

On average, replicated requests take below 10s to be an-

swered, with the minimum around 7s and a 90th percentile

of 18s. For queries, which neither go through consensus nor

require communication across subnets, the median time to get

a balance or UTXOs is about 220ms and 310ms, respectively,

and 90% of the response times are below 0.5s and 2.5s, with

considerably higher variance for UTXO requests.

Figure 7 (left) illustrates that the response time for UTXO

and balance requests depends on the size of the UTXO set.

This observation is more visible for queries than replicated

requests because in the latter the response time is dominated by

the time necessary for consensus and other protocol overhead.

We derived the number of instructions executed from the cost

of replicated UTXO requests. Figure 7 (right) shows that the

number of executed instructions varies between 5.84 ·106 and

4.76 · 108 with a clear correlation to the size of the response.

The bifurcation in the figure is due to the distinction between

stable and unstable blocks: UTXOs in unstable blocks can

be fetched more quickly compared to UTXOs that have been

migrated to the large UTXO set.

At the current exchange rate, approximately 35,000 (1,500)

requests for balances (UTXOs) can be made for 1 U.S. dollar.

By comparison, the average fee for a single Bitcoin transaction

was about 1-2 U.S. dollars at the end of 2024.

V. RELATED WORK

The idea of Bitcoin smart contracts can be traced back

at least to 2011, where, e.g., escrow and assurance contracts

using Bitcoin were proposed.11 In general, work on this topic

can be partitioned into three different approaches. The first

approach is to build smart contracts strictly using the power

of the Bitcoin scripting language. This line of work includes

custom languages that facilitate the specification of smart

contracts and their compilation into valid Bitcoin transactions.

A related approach is to extend Bitcoin’s scripting language

11See the history of https://en.bitcoin.it/wiki/Contract.
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to boost its expressiveness. The last approach is to run some

form of Bitcoin smart contracts on a different platform. We

will discuss work for each of these approaches separately.

One of the first papers about Bitcoin smart contracts in-

troduced timed commitments, which can be utilized, e.g., to

implement lotteries [8]. Subsequently, more general multi-

party computation approaches [9], [10], [11] were explored.

TypeCoin [12] models updates of a state machine as affine

logic propositions, with liveness only guaranteed when all

parties cooperate. Other languages were proposed that com-

pile transactions of a protocol to Bitcoin scripts [13], [14].

BitML [15], [16] can be used to write entire protocols, which

are then directly compiled to a set of Bitcoin transactions.

The second approach concerns extensions to the scripting

language, typically in the form of new opcodes. A covenant

is a primitive that allows transactions to restrict how the value

they transfer is used in the future [17], [18]. Covenants can

be used to implement, e.g., vaults and poison transactions to

penalize double-spending attacks. Recursive covenants make

it possible to implement a state machine that stores a cer-

tain state through a series of transactions. There are several

other proposals introducing opcodes to enable advanced smart

contracts [19], [20], [21]. An alternative is to introduce mal-

leability of transaction inputs [22]. Both the first and second

approach suffer from Bitcoin’s high costs and latency.

This work belongs to the third category of running Bitcoin

smart contracts on a different platform. While there is little

literature on this approach, numerous other blockchain-based

platforms have been built in recent years that aim to offer Bit-

coin smart contracts, such as Stacks12, Rootstock [23], THOR-

Chain13, and WBTC14 among others. Stacks smart contracts

can read the Bitcoin blockchain state (but not send transac-

tions). Hashes of Stacks blocks are written into Bitcoin blocks,

thus inheriting the Bitcoin latency. Rootstock (RSK) [23] is a

sidechain which uses RBTC as its native token. RBTC is 1:1

pegged to bitcoin stored at a special address on the Bitcoin

blockchain. RSK smart contracts cannot hold native bitcoins

or interact with the Bitcoin blockchain directly. More than half

of the 13 federation members need to multi-sign transactions

to exchange RBTC into bitcoins. THORChain is a cross-chain

protocol to support swaps between different blockchains via

threshold ECDSA signatures, including Ethereum and Bitcoin.

Its threshold ECDSA signature protocol relies on a syn-

chronous network assumption, making it vulnerable to node

crashes and bad networking conditions. Thus, its applicability

for global applications is questionable. Since the launch of its

mainnet Ethereum integration, THORChain has lost millions

of dollars due to successful hacks. WBTC is a protocol for

creating Bitcoin-backed wrapped tokens on various platforms,

12See https://stx.is/nakamoto.
13See https://thorchain.org/.
14See https://wbtc.network/.



including Ethereum and Arbitrum. The protocol is rather

centralized as the custodian is enacted by BitGo. BitGo uses

a multi-signature address to control the funds; however, it is

not clear who controls the different keys.

The third category also includes off-chain computing with

Bitcoin payments, e.g., using Bitcoin for contingent pay-

ments [24]. BitVM15 and FastKitten [25] propose to combine

off-chain smart contract computing tied to Bitcoin with de-

posits and on-chain dispute resolution, which incentivize the

correct behavior of all parties involved. BitVM is limited to

two parties, a prover and a verifier, both of which need to

be online and exchange data off-chain. The prover makes a

claim that a given function evaluates for some particular inputs

to some specific output together with a deposit. If a verifier

submits evidence that this claim is wrong, the verifier obtains

the prover’s deposit. FastKitten relies on trusted execution

environments (TEEs) and thus provides confidentiality and in-

tegrity unless the TEE has been broken. FastKitten guarantees

that all honest parties obtain the correct amount after execution

or are reimbursed. It requires all parties to be known during the

setup phase and they need to interact with both Bitcoin and

the TEE operator repeatedly in bounded time. In summary,

the other approaches in the third category suffer from weaker

security guarantees and restrictions on the smart contracts.

VI. CONCLUSION

In this paper, we have illustrated how general-purpose Bit-

coin smart contracts can be executed on the Internet Computer.

The underlying architecture is based on novel concepts such

as the interconnection of the networks at the node layer and

the storage of the Bitcoin blockchain state in a smart contract

for quick and reliable access. In contrast to other approaches,

this enables smart contracts to read and write to the Bitcoin

state in a secure manner, fast and at low cost. We conjecture

that the Bitcoin canister is the smart contract with the largest

size in existence at a state size exceeding 87 GiB. Since the

integration went live, the Bitcoin canister was queried nearly 8

million times, and it received approximately 1,900 transactions

from smart contracts, which were forwarded to the Bitcoin

network. Although the integration is tailored to the capabilities

of the Internet Computer, certain aspects of the architecture

may prove to be useful for similar endeavors.

As the Bitcoin canister returns signed responses, verifiable

by any entity that knows the public key of the corresponding

subnet, it provides a trustworthy decentralized view of the

Bitcoin blockchain state. To the best of our knowledge, this is

another unique property of this integration. Thus, the presented

integration provides new functionality that can be leveraged by

decentralized applications as well as traditional blockchain-

centric web services.
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lardo, N. Vescovo, R. Laprida, S. Mishra, F. Jinich, and D. Masini,
“RSK: A Bitcoin Sidechain with Stateful Smart-Contracts,” Cryptology
ePrint Archive, 2022.

[24] W. Banasik, S. Dziembowski, and D. Malinowski, “Efficient Zero-
Knowledge Contingent Payments in Cryptocurrencies Without Scripts,”
in Proc. 21st European Symposium on Research in Computer Security
(ESORICS), 2016, pp. 261–280.

[25] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
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