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Abstract—There is growing interest in providing programmatic
access to the value locked in Bitcoin, which famously offers
limited programmability itself. Various approaches have been
put forth in recent years, with the vast majority of proposed
mechanisms either building new functionality on top of Bitcoin or
leveraging a bridging mechanism to enable smart contracts that
make use of “wrapped” bitcoins on entirely different platforms.

In this work, an architecture is presented that follows a differ-
ent approach. The architecture enables the execution of Turing-
complete Bitcoin smart contracts on the Internet Computer (IC),
a blockchain platform for hosting and executing decentralized
applications. Instead of using a bridge, IC and Bitcoin nodes
interact directly, eliminating potential security risks that the use
of a bridge entails. This integration requires novel concepts, in
particular to reconcile the probabilistic nature of Bitcoin with the
irreversibility of finalized state changes on the IC, which may be
of independent interest.

In addition to the presentation of the architecture, we provide
evaluation results based on measurements of the Bitcoin inte-
gration running on mainnet. The evaluation results demonstrate
that, with finalization in a few seconds and low execution costs,
this integration enables complex Bitcoin-based decentralized
applications that were not practically feasible or economically
viable before.

I. INTRODUCTION

Despite significant advances in blockchain technology over
the past decade, Bitcoin is still the most well known decen-
tralized platform, commanding a large share of the market
across all projects in the blockchain space. However, in stark
contrast to other cryptocurrencies, Bitcoin funds hardly appear
in smart contracts [1], decentralized computer programs that
automatically and deterministically execute their logic based
on predefined conditions, due to the restricted expressiveness
of Bitcoin’s scripting language. While the idea and possibility
to create (simple) Bitcoin smart contracts has been around at
least since 2011, this topic has garnered considerable attention
in recent years and much effort has been expended with the
goal to deliver powerful, general-purpose smart contracts for
Bitcoin. Examples for such contracts include decentralized
payroll or escrow systems, wallets, and applications for yield
farming, lending and borrowing, as well as liquidity provision.

Ideally, a smart contract platform for Bitcoin provides the
following properties.

e Read and write: Smart contract decisions can depend on

the Bitcoin blockchain’s state and write to it.

o Security and trust: Correct behavior as long as a super-

majority of the entities involved adheres to the protocol.
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Fig. 1: Architecture overview: IC node machines obtain blocks
from the Bitcoin network and pass them through the ICP stack
to the Bitcoin canister, which makes the Bitcoin blockchain
state available to other canisters. Canisters can hold bitcoins
natively and let node machines sign Bitcoin transactions on
their behalf and forward them to the Bitcoin network.

o Efficiency: Typical user requests can be processed quickly
(in the order of seconds, not minutes) at reasonable costs
(fractions of cents, not several U.S. dollars).

Existing approaches to enable Bitcoin smart contracts, other
than the presented architecture, fail to achieve all three of
them. Solutions extending Bitcoin directly are inherently slow
and expensive. Integrating Bitcoin functionality in another
platform naturally requires reliable and secure access to the
Bitcoin blockchain state. A customary approach to intercon-
nect distinct blockchains is the use of so-called bridges, which
are (centralized or decentralized) third-party platforms that act
as intermediaries. A typical use case of a bridge is to make an
asset, such as a cryptocurrency, of one blockchain accessible
on another. However, adding a bridge introduces a dependency,
which needs to be trusted and increases the attack surface.
Since bridges have been marred by hacks that led to losses in
the order of hundreds of millions [2], an integration without
any reliance on bridges is preferable from a security point of
view. Proposed solutions without bridges either fail to provide
a mechanism to read and write Bitcoin state directly, introduce
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security vulnerabilities, or are expensive and slow; see §V for
a more in-depth discussion.

The architecture introduced in this paper provides support
for Bitcoin smart contracts on the Internet Computer (IC)".
The motivation for this choice is manifold: First, the IC
protocol suite (ICP stack) provides strong security guaran-
tees as it can sustain a theoretically optimal upper bound
on the number of malicious nodes and it maintains state
integrity even under asynchrony (whereas liveness requires
partial synchrony). Moreover, it provides a smart contract
execution environment that is efficient both in terms of speed
and cost, and it allows smart contracts, called canisters on
the IC, to store large amounts of data. As we will see, our
architecture leverages the latter capability to hold the sizable
Bitcoin blockchain state. Additionally, it offers a high degree
of scalability, which is needed to support a large number
of Bitcoin smart contracts. Lastly, smart contracts interacting
with the Bitcoin network must be able to create ECDSA or
Schnorr signatures, which underpin the security of Bitcoin.
The IC implements both threshold ECDSA [3] and threshold
Schnorr protocols that are secure under asynchrony, providing
canisters with public keys for both schemes and the ability to
sign arbitrary data under those keys.

In our architecture, IC nodes and Bitcoin nodes commu-
nicate directly, obviating the use of any additional infras-
tructure. The Bitcoin adapter, introduced in §III-B, is the
novel component that enables the direct interaction between
the two networks. This integration at the node level is used
to send transactions—making use of the threshold-signing
functionality exposed to smart contracts on the IC—to the
Bitcoin network and to ingest Bitcoin blocks as shown in
Figure 1. The Bitcoin blockchain state is maintained in a
specific smart contract, called the Bitcoin canister, presented
in §III-C, which is an unprecedented approach given its sheer
size. Other canisters can learn about the current state of the
Bitcoin blockchain and send transactions by interacting with
the Bitcoin canister through a simple interface.

Although the IC has various features that facilitate cross-
chain integrations, many challenges had to be tackled. In
particular, Bitcoin and the IC exhibit many fundamental dif-
ferences: Bitcoin only has probabilistic guarantees about the
blockchain state and requires strong synchronicity assumptions
regarding message transmissions. By contrast, the IC ensures
that state change operations are never rolled back once fi-
nalized. Moreover, the IC only requires sporadic periods of
synchronicity for liveness as mentioned above. In short, the
architecture must ensure that there is always deterministic
agreement on the probabilistic state of the Bitcoin blockchain.
To this end, new notions of stability of the Bitcoin blockchain
state are introduced, which are used extensively in the archi-
tecture and are essential for its security.

The paper is structured as follows. Background information
about both blockchains and definitions are provided in §II.
The main contribution of this work is the architecture itself,

I'See https://internetcomputer.org/.

which is presented in detail in §III. The evaluation in §IV
consists of a discussion of security considerations (in §IV-A)
to elucidate crucial aspects of the architecture design and a
presentation of measurement results of the live system running
on IC mainnet (in §IV-B). Related work is summarized in §V
and §VI concludes the paper.

II. BACKGROUND AND DEFINITIONS
A. Background on the Internet Computer (IC)

We briefly present the IC Protocol (ICP) stack. The IC
whitepaper [4] provides a more comprehensive introduction.
Objective. The IC aims to provide efficient multi-tenant,
general-purpose, and secure computation in a decentralized
and geo-replicated manner. In short, it is a blockchain-based
platform for the execution of smart contracts called canisters.
Canisters are the smallest units bundling logic and state,
allowing for parallel execution. In response to a message that
a canister receives from a user or another canister, a canister
executes its logic, which may trigger the transmission of
messages, modification of its internal state, or the creation of
other canisters. Moreover, canisters can schedule the execution
of (parts of) their own code using timers, in contrast to
most other smart contract platforms where execution can only
be triggered by users. All canisters are hosted on dedicated
individually untrusted nodes running the ICP stack.

Subnets. The nodes are partitioned into subnets, each subnet
providing blockchain-based state machine replication [5] for
the set of canisters deployed on it and connecting to nodes
in other subnets to enable communication between canisters
hosted on different subnets. Each node in a subnet runs all
the canisters deployed on that subnet. There are subnets with
100,000+ canisters and subnets with just a handful of canisters.
Subnets consist of 13-40 nodes spread across the Americas,
Europe, and Asia. Node providers and the location of their
nodes are public, thus a high degree of fault tolerance can be
achieved with relatively low replication factors.

Adversarial model and fault tolerance. The IC is designed
for Byzantine fault-tolerance, i.e., faulty nodes may deviate
in arbitrary ways from the IC protocol, accounting for bugs,
outages, as well as outright malicious behavior by colluding
nodes. In any given subnet with n = 3f + 1 nodes, at
most f nodes may be faulty. This is the highest number that
can be tolerated without additional assumptions on failures
and message delivery [5], [6]. The IC consensus protocol [7]
guarantees safety under asynchronous network conditions.
Layers. The ICP stack consists of four layers. The network-
ing layer disseminates protocol and user-generated messages.
Message validation and ordering is handled by the consensus
layer. The message routing layer ensures that messages end
up at the right canister and are scheduled deterministically.
The execution layer triggers the deterministic execution of the
canisters deployed on the IC and persists the state changes.
Deterministic finalization. Once the IC consensus proto-
col [7] reaches agreement on the next block (containing
messages from users and canisters on other subnets) to be
added to the subnet’s blockchain, the block is considered
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Fig. 2: (1) The Internet Computer Protocol (ICP) partitions its
nodes into mutually disjoint subnets. (2) The nodes of each
subnet run a stack of protocols for state machine replication
to execute canister smart contracts.

finalized. Since this decision is irreversible, the block content
is guaranteed to be processed by the message routing layer
and forks are impossible. Thus, finalization is deterministic.

Figure 2 depicts the structure of the Internet Computer,
comprising multiple subnets with each subnet consisting of
a replicated state machine run on multiple nodes.

B. Background on Bitcoin

Bitcoin is a cryptocurrency operated by a decentralized peer-
to-peer (P2P) network. Bitcoin transactions are used to transfer
bitcoins from at least one party to one or more parties. Each
transaction produces a set of outputs, which consist of a value,
i.e., the amount of bitcoin, and a locking script defining the
conditions to spend this output. The inputs are simply previous
outputs that are spent entirely in this transaction.

Since all inputs are fully consumed in a transaction, trans-
ferring the bitcoins to the outputs (minus a transaction fee), all
spendable bitcoins are held in the unspent transaction output
(UTXO) set. Thus, knowledge of the UTXO set suffices to
determine the balance of any Bitcoin address.

Bitcoin transactions are processed in batches called blocks,
each block referencing a specific predecessor block. A block
is only valid if its hash, interpreted as a large number, is at
most a certain target value. Let 4 denote the hash function
used in Bitcoin, which is the SHA-256 algorithm applied to
the block and then again to the resulting hash. A numerically
small 7 (b) implies a high level of difficulty to find such a
block by varying block metadata and shuffling transactions.?
The difficulty target to create a block is adaptive and ensures
that a large computational effort is required to create a block
with 10 minutes between block creation on average, giving
the network sufficient time to disseminate newly found blocks.
The aforementioned transaction fee of every transaction in a
block goes to the party that computed the block.

2See https://en.bitcoin.it/wiki/Difficulty.

Multiple blocks may reference the same predecessor block,
inducing a directed tree of blocks with the root being the
genesis block. Let B denote the tree of all blocks available
at some peer. Peers may have slightly different views and the
following definitions always refer to a local view. Given the
set B of blocks, the height h(b) of block b € B is the number
of predecessor blocks, terminating at the genesis block b, with
height h(by) = 0. While there is only one path from any block
to the genesis block, a block may have multiple successors.
Let succ(b) denote the set of successors of block b. A depth
function d measures the maximum cumulative cost from a
given block b to any of the tips (i.e., leaves) that are connected
to b using a cost function ¢ : B — R:3

e
d(b) o {C(b) + mMaxp’ e suce(b) d(b/)

suce(b) = {}

otherwise

Since a block b is always associated with a block header /3,
the height and depth functions can be applied to block headers
as well, i.e., h(b) = h(B) and d(b) = d(f) for a block b and
the associated block header /3. For a given tree B, we further
define that d(B) := d(by), which states that the depth of the
blockchain corresponds to the depth of its genesis block.

We introduce two specific depth functions: The first function
d. measures the maximum “distance” of a block b to the
tips, i.e., ¢(b) = 1 for all b € B. The function d. is
related to the concept of confirmations in Bitcoin. Once a
transaction appears in a block, the transaction is said to have
one confirmation, and the confirmation count increases with
each appended block. If a transaction in a block b has c
confirmations, then d.(b) = c¢. Let w(b) denote the hash
work expended to create block b. Technically, w(b) > w(d)
if H(b) < H(V'). The second function d,, determines the
maximum amount of hash work over all paths between b and
connected tips, i.e., ¢(b) := w(b) for all b € B. The function
d.,(b) determines the current blockchain, which is the chain
of blocks from the genesis block to a tip that maximizes the
sum of expended hash work. Formally, the current blockchain
is the chain of blocks [by = by, b1,...,bk], by € suce(bi—_1)
for all i € {1,...,k}, such that S°F_ d,,(b;) = du(B).

More details on the Bitcoin protocol can be found online.*

C. Novel Concepts

In addition to the definitions in §II-B, we introduce our
own concepts that address the lack of deterministic finality in
Bitcoin. As mentioned before, the knowledge of the UTXO
set suffices to determine the balance of any Bitcoin address;
however, it is possible that a different chain (i.e., a fork)
becomes the current blockchain, invalidating all blocks on the
former blockchain between its tip and the block where the
two chains diverged. While such reorganizations have become
increasingly rare, it is nevertheless a risk, in particular for a
smart contract that cannot be updated easily.

3In graph theory, the definitions of height and depth are reversed. We use
the terminology commonly found in Bitcoin literature.
4See https://en.bitcoin.it/wiki/Protocol_documentation.
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Fig. 3: A blockchain with two forks is shown with the
confirmation-based stability indicated inside each block.

Since there is no deterministic finality, a weaker notion of
“stability” is introduced, which can be motivated as follows. It
is evident that a higher block depth (for either depth function)
implies a higher chance that a block will persist. This is a
necessary but not sufficient condition when considering that
there can be competing forks growing at a similar rate: even
if a block has a high block depth, another block might exist at
the same height with a higher block depth. Thus, a block must
have a sufficiently higher block depth than any other block at
the same block height. Both conditions are captured in the
following definition.

Definition II.1 (J-Stability). Given a depth function d : B —
Ny, a block b € B is §-stable if

1) d(b) >4 and

2) Yo' € B\ {b},h(t)) = h(b) : d(b) — d(b') > 4.

For any 0 > 0, the definition implies that there can be only
one J-stable block at any height h, making it possible to extend
the definition to block heights: height h is d-stable if there is
a block b such that h(b) = h and b is J-stable. It also follows
that a d-stable block is ¢’-stable for any ¢’ < §. Given a certain
depth function, the stzability of a block b is the largest § for
which it is d-stable.

Definition II.1 can be instantiated with either depth function
introduced in §II-B, serving different purposes. When using
the depth function d. to count confirmations, we call it
confirmation-based (9-)stability. More precisely, a transaction
in a block b is considered to have c confirmations if the
confirmation-based stability of b is c. By contrast, difficulty-
based (9-)stability, which applies the depth function d,,, is
used to determine if a block is “stable enough” in the sense
that it will persist with high probability. More precisely, the
difficulty-based stability d,,(b) is expressed relative to the
difficulty of a particular block b*, i.e., d,(b)/w(b*), to be
able to specify a threshold ¢ that is independent of current
difficulties. We say that block b is difficulty-based 0-stable with
respect to b* if d,,(b)/w(b*) > 4. Details about the usage of
these concepts are presented in §III-C.

An example block tree is depicted in Figure 3 with blocks
at the same height in the same horizontal position (and block
heights increasing from left to right). The number in each
block indicates its confirmation-based stability. The figure
shows show that the stability of a block may stagnate even
when its block depth increases. Another observation is that
the stability of a block is negative when it is on a fork that
is shorter than the longest chain. While these concepts do not
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exist in Bitcoin, it is worth noting that they merely introduce
conservative rules to deal with forks. In the absence of forks,
the rules are equivalent to the standard definitions in the sense
that confirmations are counted and the current blockchain is
determined in the same way as customary in Bitcoin.

III. ARCHITECTURE
A. Overview

The functionality to implement Bitcoin smart contracts on
the Internet Computer hinges upon two core building blocks.
The first one enables IC nodes and nodes in the Bitcoin P2P
network to interact directly: the Bitcoin adapter is introduced
at the networking level, running alongside the main IC process
and connecting to nodes in the Bitcoin network. The Bitcoin
adapter both ingests updates about the Bitcoin blockchain state
(in the form of Bitcoin blocks) and transmits state changes
to the Bitcoin network (in the form of Bitcoin transactions).
As mentioned in §I, this mechanism fundamentally differs
from the commonly employed approach to overcome the siloed
nature of blockchains using bridges.

The second building block provides an interface for canis-
ters to read from and write to the Bitcoin blockchain. Running
on top of the IC stack, the Biftcoin canister is responsible to
keep track of the Bitcoin blockchain state. Other canisters can
interact with the Bitcoin canister through its API in order to get
information about the Bitcoin blockchain as well as transmit
Bitcoin transactions to update the Bitcoin blockchain state.

Figure 4 provides an overview of the architecture. The
(sandboxed) Bitcoin adapter communicates with the Bitcoin
network and the Bitcoin canister, interfacing at the ICP
networking layer. The execution layer executes the Bitcoin
canister, which processes requests from other canisters, e.g.,
requests to get the UTXOs of a Bitcoin address or to send a
Bitcoin transaction to the Bitcoin network.

B. Bitcoin Adapter

The objective of the Bitcoin adapter is to enable two-way
communication between the Internet Computer and the Bitcoin
network without any intermediaries. The Bitcoin adapter is
a sandboxed OS-level process that can be instantiated on
every IC node. It communicates with the main IC process
using standard inter-process communication. The source code,
roughly 6000 lines of Rust code, resides in the IC repository.’

3See https://github.com/dfinity/ic/tree/master/rs/bitcoin/adapter.



In some sense, the Bitcoin adapter is akin to a simplified
payment verification (SPV) Bitcoin client.® The main differ-
ence to a standard SPV client is that the Bitcoin adapter
is geared towards providing information about the Bitcoin
blockchain state to the Bitcoin canister, interacting with Bit-
coin nodes using the Bitcoin P2P protocol and a bespoke
protocol for the communication with the Bitcoin canister.
Connectivity to the Bitcoin network. Given a hard-coded
list of DNS seed nodes—the same seed nodes as used by
bitcoind—, the Bitcoin adapter attempts to connect to a
configurable number ¢ (= 5 on mainnet) of randomly chosen
Bitcoin nodes using the following discovery process. At start-
up, the Bitcoin adapter recursively requests IP addresses of
Bitcoin nodes until the number of collected addresses reaches
a certain upper threshold ¢,,. Once the threshold is reached, the
Bitcoin adapter chooses Bitcoin nodes uniformly at random
from the list of collected addresses and tries to establish ¢
connections. Whenever a connection is lost, a new random
connection is established. If the number of available IP ad-
dresses drops below a lower threshold ¢;, the Bitcoin adapter
requests more addresses until its size reaches ¢, again. The
parameters ¢; and ¢, are set to 500 and 2000 for mainnet,
100 and 1000 for testnet, and t; = ¢, = 1 for regtest (for
local testing). Experiments showed that these numbers (for
mainnet and testnet) result in mostly disjoint sets of connected
Bitcoin nodes at every Bitcoin adapter for common subnet
sizes of 13 to 40 nodes. The discovery process is skipped in
regtest mode because the IP addresses are pre-configured. If
t,, addresses cannot be collected, the Bitcoin adapter remains
in the discovery state but provides its service to the Bitcoin
canister as long as there is at least one active connection.

It is worth noting that IC nodes only have IPv6 addresses

and therefore the Bitcoin adapter is restricted to interacting
with Bitcoin nodes accessible over IPv6. Many Bitcoin nodes
that have an IPv6 address are presumably dual-stacked, i.e.,
they are themselves connected over IPv4 to other nodes.’
We conjecture that the Bitcoin adapters connect to a fairly
unbiased random sample of Bitcoin nodes.
Interaction with the Bitcoin network. Once the Bitcoin
adapter is connected to at least one Bitcoin node, it downloads
the Bitcoin block headers, starting from the hard-coded genesis
block header. For each obtained block header, the Bitcoin
adapter verifies its validity, making sure that it is well-formed,
the hashPrevBlock field points to a locally available block
header, the Bits field contains the correct difficulty target,
the block header hash satisfies this target, and the Time field
contains a valid block timestamp.® Any block header violating
some of these conditions is discarded.

The Bitcoin adapter does not perform any fork resolution,
i.e., it accepts and stores any valid block header, possibly mul-
tiple block headers at the same height. Adding fork resolution

See §8 of the Bitcoin white paper at https://bitcoin.org/bitcoin.pdf.

7Unfortunately, there is no reliable way to verify this assumption. It is
reasonable to assume that the majority of node administrators do not configure
connectivity exclusively over IPv6.

8See https://en.bitcoin.it/wiki/Block_timestamp.

Algorithm 1 Given B, and B,, process request (8%, A, T').

: for tx € T do
transaction_cache.add (tx)

: end for

: B = {}’ B = {}’ N = {}, Bcur = ﬁ*

1
2
3
4
5. while (., # L and |[N| < MAX_HEADERS do
6
7
8

if Beur ¢ A and Bey,.prev € AU B then
bewr = get_block (Beur, Ba, h(8%))
if b.yr # 1 and size (B) < MAX_SIZE and
|B| < max_blocks_at_height (h(8*), B,)

then
9: B = BU{(beur, Bewr)}, B = BU{Beur}
10: end if
11:  end if

12 if Beur ¢ AU B then

13: N =N U{Beur}

14:  end if

15: Bcur = bfs_next (/BCUT‘I Ba)
16: end while

17: return [B, N]

logic would go against the goal of keeping the Bitcoin adapter
as lightweight as possible, leaving the task of resolving forks
and maintaining a correct state to the Bitcoin canister.
Interaction with the Bitcoin canister. The Bitcoin adapter
receives requests from the Bitcoin canister, which contain a
specific block header 8* and a set A of block headers at
heights greater than h(S8*) for which the Bitcoin canister
has already obtained the blocks. Additionally, each request
contains a possibly empty list 7' of Bitcoin transactions that
are supposed to be transmitted to the Bitcoin network. Details
about the request parameters are provided in §III-C. Given
this information, the Bitcoin adapter aims to return blocks that
extend the Bitcoin canister’s chain (or tree). Additionally, it
sends a list of upcoming block headers, if any, to inform the
Bitcoin canister that more blocks need to be synced.

The algorithm is defined more formally in Algorithm 1. Let
B, denote the set of locally available Bitcoin blocks and 5, be
the local block header tree. While B, is extended continuously,
blocks are only added to or removed from B, when handling
requests from the Bitcoin canister. Every outbound transaction
txr € T is put into a transaction cache. Transactions in this
cache are advertised asynchronously to all connected Bitcoin
nodes and transmitted upon request. A transaction is kept in
the cache until transmitted to all connected peers or until
it expires after a certain time, configured to 10 minutes.
The expiry time ensures that memory is freed even if there
are connected Bitcoin nodes that do not request advertised
transactions. Given that there is generally no guarantee that
transactions are added to the Bitcoin mempool, this best-effort
strategy is acceptable.

After handling the transactions in the request, the Bitcoin
adapter traverses its block header tree B, in a breadth-first-
search fashion (using the function bfs_next), starting at the



block header 5*. The block and block header pairs that will
be returned are collected in the set B, whereas set B is used
to collect only the block headers in set B. If the current block
header (., is not in the set A and its predecessor SBey..prev
is in A or B, i.e., B.y follows a block header for which the
Bitcoin canister has the block or the corresponding block has
been collected already, the block b, is retrieved using the
function get_block if available. If b, is not available, it
is requested from the connected peers asynchronously so that
the block may be served in the response to a future request.
Otherwise, if the total size of blocks collected in B does not
exceed a certain maximum size (MAX_SIZE=2MiB) and the
total number of blocks in B is at most a certain upper bound
based on the height h(8*), then (beyr, Beur) and Bey, are
added to B and B, respectively. Note that MAX_ SIZE is a
soft limit in that a block that exceeds this size is still added
to B. The maximum number of blocks is unbounded up to a
certain hardcoded height and then it is reduced to 1, i.e., only
a single block may be returned. Returning multiple blocks
speeds up the syncing process but returning only one block is
preferable for security reasons as discussed in §IV-A.

If the block is not available, f3.,, is added to the set N
of upcoming block headers before considering the next block
header. Block headers are added to the set N as long as its
size is below a configurable maximum size (MAX_HEADERS=
100 in production). If there are no more block headers to be
processed (8. = L) or the set A reaches the maximum size,
the Bitcoin adapter returns [B, A] to the Bitcoin canister.

C. Bitcoin Canister

The Bitcoin canister is a smart contract that provides the
core Bitcoin functionality. It is a fairly complex smart contract
at approximately 10,000 lines of Rust code.” As shown in
Figure 4, the Bitcoin canister enables other canisters to read
the Bitcoin blockchain state as well as writing to it.

Instead of storing the entire Bitcoin blockchain, which

would require several hundreds of gigabytes of storage space,
the Bitcoin canister merely stores the UTXO set. As discussed
in §II-B, the UTXO set is sufficient to derive the current
balance of any Bitcoin address while reducing the space
requirement. The downside of this approach is that fork
resolution becomes challenging as it is hard to undo updates
to the UTXO set.
State management. The Bitcoin canister uses the concepts
introduced in §II-C to deal with the probabilistic finality
in Bitcoin. Concretely, a block is considered stable if it is
difficulty-based J-stable for § = 144 on mainnet. As there are
144 Bitcoin blocks on average per day, unless the difficulty
target changes significantly, a block becomes stable after
approximately one day. Such blocks are expected to persist.

The block header 3* at the greatest height that is considered
stable is called the anchor. The Bitcoin canister stores the
UTXO set U of the Bitcoin blockchain up to and including
the anchor height, whereas all block headers are stored in a

9See https://github.com/dfinity/bitcoin-canister.

Algorithm 2 Given U, T and 8*, process response (B, N).

1: for (b,3) € B do

2 if is_valid (b, B) and is_valid (8, 7T) then
3 append (3, T)

4 b(B) = b

S D= {0(8) £ 1| B € T,h(B) = h(5") +1}
6:

7

8

et == arg mMaxye By eqt duw
while du) (bnezt)/w(ﬂ*) 2 4 do
B* = get_header (bnext)

9: process_block (U, bpest)

10: remove_blocks (T, Bnext)

11 Breat = {b(B) # L | B € T,h(B) = h(B") + 1}
12: bnext ‘= arg mMaxpe By eqt dw b

13: end while

14: end if

15: end for

16: for 5 € N do
17: if is_valid (8, wv) then

18: append (B8, T)
19: end if
20: end for

21: A:={BeT|bB) #L}
22: synced = maxger h(B) — maxgeca h(B) < T

directed tree 7. While conceptually the UTXO set U is simply
the set of all unspent transaction outputs, the implementation
uses a data structure with Bitcoin addresses as the index for
an efficient retrieval of all UTXOs associated with an address.

For heights greater than h(/3*), the Bitcoin canister addi-

tionally stores the corresponding blocks. The block for block
header 8, h(B) > h(5*), is denoted by b(53). If the block
is not available, then b(3) = L. Since unstable blocks are
stored separately, both the UTXO set U and the unstable
blocks must be considered to determine the current UTXOs
of an address. Consequently, the computational complexity
to retrieve all UTXOs or compute the balance of an address
grows linearly with the parameter 6. Hence, there is a trade-off
between the computational complexity and security as a larger
0 makes it less likely that blocks at heights lower than h(3*)
are affected by a block reorganization. Note that the Bitcoin
canister can cope with any block reorganization at heights
greater than h(*) automatically. Conversely, a reorganization
at a lower height would require a manual canister upgrade as
the UTXO set would need to be updated. Setting § = 144
is a conservative choice, aiming for high security, i.e., a low
risk of being affected by a block reorganization, while still
guaranteeing a fast processing of requests.
Interaction with the Bitcoin adapter. The Bitcoin canister
periodically requests updates from the Bitcoin adapter by
sending a message containing the anchor $* and a list A of
the block headers in 7 for which it has already received the
corresponding blocks, ie., A := {8 € T | b(8) # L}. The
request also contains the set 1" of Bitcoin transactions that are
to be advertised to the Bitcoin network.

The response of the Bitcoin adapter is a set B, containing
pairs consisting of blocks and their headers, and a set A/ of
block headers. Algorithm 2 shows how the Bitcoin canister
handles a response (B, N) received from the Bitcoin adapter.



For each pair (b,3) € B, it is verified that both b and
[ are valid. To this end, the Bitcoin canister performs the
same checks on the block headers as the Bitcoin adapter (see
§III-B). A block b is valid if the corresponding block header
£ is valid and b is well-formed, 3 points to a predecessor for
which the block is available, and the Merkle tree root hash of
b is the hash in . Furthermore, it is verified that 3 is a valid
extension of the block headers in 7. Note that the validity of
the transactions is not verified. The Bitcoin canister relies on
the proof of work that goes into the blocks and the verification
of the blocks in the Bitcoin network. Transaction validation
is omitted because a bug in the transaction verification logic
is deemed a bigger security risk than relying on the vetting
of blocks in the Bitcoin network. Moreover, the notion of §-
stability adds a level of protection against forks.

If both b and 3 are valid, 3 is added to 7 and b is stored.
Next, it is verified whether the addition of b renders any
block by,e.+ at height h(5*) 4 1 difficulty-based J-stable with
respect to b(8*) in which case the block header of block by,e.¢
becomes the new anchor. Whenever the anchor changes, the
UTXO set U and the tree 7 must be updated as well: The
UTXO set U is updated by processing the transactions in
bpest and then block by, is discarded (i.e., S(bpext) == L).
These steps are performed in a loop as more than one block
may become stable with the addition of a single block. Unlike
blocks, block headers are kept forever; however, if there are
multiple block headers at a stable height, all but the single
stable block header are removed from 7. Finally, all validated
block headers in the received set A/ are appended to 7.

Since it is risky to provide outdated information about the
blockchain state, the Bitcoin canister only responds to requests
if the maximum height in 7 does not exceed the maximum
height of available blocks by more than a parameter 7 (= 2
in production). If this condition is not satisfied, the Bitcoin
canister replies with an error to each request. This mechanism
explains the addition of the block header set N to the response
of the Bitcoin adapter: it informs the Bitcoin canister about
missing blocks in a tamper-proof manner.

Application programming interface. The goal is to pro-
vide a simple, low-level interface that is powerful enough
to enable complex Bitcoin smart contracts. The two core
functions to read from and write to the Bitcoin blockchain
state are called get_utxos and send_transaction,
respectively. The API contains several additional functions,
such as a convenience function to get the balance of an address
(get_balance), which are omitted for the sake of brevity.

When calling the get_utxos endpoint, a Bitcoin address
and network (mainnet, testnet, or regtest) must be specified.
Optionally, a filter can be provided as well, which is either
a certain number of confirmations or a request for a specific
page. The response from the Bitcoin canister consists of a
set of UTXOs of the requested Bitcoin address for the given
network, the hash and height of the block header at the tip
of the considered chain, plus a next page reference, which is
non-empty if the response does not contain all UTXOs. This
pagination mechanism is required for addresses that hold a

large number of UTXOs. The UTXOs are returned sorted by
block height in descending order, ensuring the correctness of
the pagination mechanism.

As described in §II-C, the blockchain is defined as the
chain that maximizes d,,(b,), where b, denotes the genesis
block. If the request specifies a minimum of ¢ confirmations,
only confirmation-based c-stable blocks are considered. It is
important to note that requests for ¢ > & = 144 are rejected as
the returned set of UTXOs may not be correct in that case: It
is possible that the response is missing some outputs because
transactions that spend these outputs should not be considered
for the given choice of c¢; however, this information is not
contained in the UTXO set.

The send_transaction endpoint takes two parameters:
the serialized Bitcoin transaction and the target network. After
performing basic checks to ensure that the received bytes
encode a syntactically correct transaction, the transaction is
included in the set T of transactions that is forwarded to the
Bitcoin adapter as part of its regular update requests.

IV. EVALUATION
A. Security Considerations

The availability and integrity of the Bitcoin integration
functionality are the two crucial security considerations that
have guided the design of the architecture. The purpose of
this section is to illustrate which attack scenarios have been
considered and how they are mitigated.

We start by formally defining the assumptions with respect
to the attacker’s control over IC and Bitcoin nodes. Specifi-
cally, we consider a powerful attacker that can simultaneously
control a large fraction of all Bitcoin nodes and the Internet
Computer nodes. Moreover, the attacker has a large hash
power available so that it can create arbitrary Bitcoin blocks
for the same difficulty target as in Bitcoin mainnet, albeit
at a lower rate than the Bitcoin network itself. Rather than
specifying concrete parameters, we define the extent of the
attacker’s power in the course of this section, together with
explanations where necessary.

The Bitcoin canister runs in a subnet comprising n nodes,
where the Bitcoin adapter on each node connects to £ randomly
selected Bitcoin nodes. We make the standard assumption that
the attacker controls less than n/3 of these nodes. Let ¢ be
the fraction of Bitcoin nodes under the attacker’s control. In
order to cut off the Bitcoin canister from the Bitcoin network,
thereby preventing updates to the state in the Bitcoin canister,
the attacker must control a large share of all Bitcoin nodes,
which is deemed infeasible for practical values of n and /.

Definition IV.1. For any subnet size n and number ¢ of links
from Bitcoin adapters to Bitcoin nodes, the fraction ¢ of
corrupted Bitcoin nodes is upper bounded by ¢ < n=1/¢ (1).

Given the large number of Bitcoin nodes, this assumption
easily holds for parameters used in practice, i.e., for n = 13
and ¢ = 5, the requirement is that ¢ < 0.6. If a lower
constant bound on ¢ is required, it is always possible to set
¢ € ©(log(n)), undershooting ¢ by any constant factor.



The Bitcoin canister makes progress as long as at least
one Bitcoin adapter is connected to at least one correct
Bitcoin node. Definition IV.1 implies that every Bitcoin adapter
connects to a correct Bitcoin node with high probability.

Lemma IV.1. If each Bitcoin adapter connects to ¢ Bitcoin
nodes uniformly at random, then every Bitcoin adapter con-
nects to a correct node with overwhelming probability.

Proof. The probability that a Bitcoin adapter connects only to
corrupted Bitcoin nodes is ’. Thus, the probability that it is

1
eclipsed is 1 — (1 — " )" =~ 1 — e—n¢' W 1-1=0. O

If the Bitcoin canister is almost certain to remain connected
to correct Bitcoin nodes, an attacker can only try to corrupt
the state of the Bitcoin canister. As discussed in §III-B, the
Bitcoin adapter only accepts valid block headers and blocks,
which makes it impossible for an attacker to flood the Bitcoin
canister with invalid data.

Since the Bitcoin canister does not verify that the spending
conditions of transactions are satisfied, an attacker can attempt
to feed the Bitcoin canister valid blocks with manipulated
transactions. However, this is a costly attack as valid blocks
require a certain proof of work. Quite generally, there is always
a chance that the attacker mines a block before other miners,
even if the attacker’s hash rate is substantially smaller than the
total hash rate. As a result, it is necessary to wait for a certain
number of confirmations, reducing the risk of a reorganization
that removes the block containing the transaction in question.

By the same principle we define that any critical actions by
smart contracts that depend on the Bitcoin canister require c*
confirmations, where c* is large enough so that the attacker is
not able to create a fork with a height that exceeds the “real”
blockchain’s height by ¢* at the same difficulty level, i.e., the
attacker may create a longer chain only at a reduced difficulty.

Definition IV.2. Given blockchain B of height A and a
constant c¢*, the attacker’s hash rate is bounded so that the
height i’ of the attacker’s blockchain B’ is less than i+ c* or
dy(B') < dy(B) at all times with overwhelming probability.

This is a reasonable assumption as otherwise the attacker
can launch (double-spend) attacks against any service that
works with Bitcoin, including centralized exchanges.

An attacker may attempt to corrupt the state of a smart
contract by manipulating the state of the Bitcoin canister such
that the attacker’s fork is considered to have c¢* confirmations.
This is infeasible under the assumption of Definition IV.2.

Lemma IV.2. The probability of a state corruption for Bitcoin
services on the IC requiring ¢* confirmations is negligible.

Proof. We assume that the attacker has the means to send any
(valid) block to the Bitcoin canister. Furthermore, we assume
that there is a corrupting transaction in a block b’ at a height
h' on a forked chain B’ created by the attacker.

If this chain has a maximum height of hj,q, + ¢* instead
of the maximum height A,,,, of the real blockchain B, then
dy(B’) < dy(B) due to Definition IV.2. Since difficulty-based

stability is used to identify the current blockchain, the Bitcoin
canister ignores the attacker’s fork and consequently does not
consider the corrupting transaction in any response.

If d,(B’) > dy(B), the attacker’s chain has a maximum
height of less than h.,q, +c*. If b’ has at least ¢* confirmations
on B’, it follows that A’ < h,qz, i.€., there is a block b at
height h’ on the real blockchain B. Moreover, we have that
d.(b') — dc(b) < c¢*, implying that &’ is not confirmation-
based c*-stable. As confirmation-based stability determines the
number of confirmations, the Bitcoin canister never reports c*
or more confirmations for the corrupting transaction. o

Given a conservative upper bound on the hash power of the
attacker as specified in Definition IV.2, Lemma IV.2 illustrates
how the notion of stability helps to overcome the probabilistic
nature of Bitcoin. If § is chosen large enough, the attacker
effectively requires a commanding share of all hash power
to launch an attack that causes a state corruption. In this
scenario, the attacker has the power to undermine the integrity
of most Bitcoin services. As mentioned before, 6 = 144 is a
conservative choice, which means that the attacker must create
144 blocks more than the Bitcoin network over any period of
time to corrupt the Bitcoin canister state.

While the state of the Bitcoin canister is considered safe
when it is running and fully synced, there is added risk when
syncing the Bitcoin blockchain, either initially or after an
extended downtime of the Bitcoin canister, causing the Bitcoin
canister to be out of sync. It is important to note that the
latter situation has never occurred but security measures for
this possibility are in place nonetheless. If the attacker knows
that the Bitcoin canister will not sync beyond a specific block
height hA* until time ¢ and ¢ lies sufficiently far in the future,
the attacker can use the time to build a fork of significant
length starting at height A* + 1 even if the attacker’s hashing
power is a small fraction of the total hashing power of the
Bitcoin network.'? The attacker would then try to get ¢* blocks
accepted by the Bitcoin canister before it learns about the
blocks on the real blockchain.

This risk is mitigated by the correct Bitcoin adapters, which
send the set N of block headers at greater heights in their
responses, ensuring that the Bitcoin canister does not enter the
synced state prematurely. Thus, even if the attacker manages to
serve the blocks on the fork, the Bitcoin canister does not act
upon them. Once the Bitcoin canister is synced, the attacker’s
fork will not be longer by c¢* blocks by assumption.

The risk is greater after a (hypothetical) downtime of the
Bitcoin canister. Since less than a third of the nodes in the
subnet might be malicious, the attacker may attempt to use
these nodes to ingest a fork of length at least c* as soon
as the Bitcoin canister is operational again. The consensus
algorithm of the IC ensures that the next block maker cannot
be predicted, and it is the block maker that proposes the IC
block containing the Bitcoin block. Thus, the attack succeeds if
malicious IC nodes are chosen as the block makers, forwarding

10For example, at 1% of the total hashing power, the attacker can mine 10
blocks in expectation in a week at the difficulty level of the Bitcoin network.
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Fig. 5: The growth of the UTXO set and the Bitcoin canister
space consumption is shown over the span of two years.

the blocks on the attacker’s fork to the Bitcoin canister while
claiming that there are no further block headers (i.e., N' = {}).

Lemma IV.3. If the attacker controls f < n/3 nodes of the
subnet, the probability of a state corruption for the IC Bitcoin
services requiring c* confirmations after downtime is < 37 .

Proof. Since the Bitcoin canister only accepts one block at a
time, each malicious block maker can only deliver one block
on the fork to the Bitcoin canister. If there is any round where
a correct IC node is chosen as the block maker, it will provide
the list A/ of correct block headers as each Bitcoin adapter is
connected to correct Bitcoin nodes due to Lemma IV.1. Since
the maximum height of the attacker’s fork does not exceed the
maximum height of the real blockchain by more than c¢* — 1
by assumption, the attack only succeeds if malicious block
makers are chosen c* times in a row. As the attacker controls
less than n/3 IC nodes, the claim follows. O

The probability of 37¢ may appear high for a customary
choice of c* but the attack also requires the corruption of many
IC nodes in addition to a predictable downtime of the Bitcoin
canister. As a result, such an attack is deemed highly unlikely.

B. Measurements

This section studies the resource consumption of the Bitcoin

canister deployed on IC mainnet and the interaction with the
real Bitcoin network, in terms of the state size and the number
of WebAssembly instructions required to maintain the state
and handle requests, as well as the latency experienced by
users when interacting with the Bitcoin canister. We omit a
discussion of throughput capacity due to space constraints and
the fact that capacity can be increased linearly on demand by
hosting Bitcoin canisters on more subnets.
Storage and block ingestion. The Bitcoin canister stores the
whole UTXO set. Thus, its storage requirement grows linearly
with the size of the UTXO set. By the end of March 2025, the
Bitcoin canister reached a size of more than 103 GiB, storing
more than 170 million UTXOs as shown in Figure 5. The
number of instructions executed for block ingestion varies with
the size of the block as evident in Figure 6. It is typically in
the order of 20 billion instructions, with roughly half of them
used for output insertions and input removals, respectively.

Latency and cost of handling requests. In order to evaluate
the time required to handle user requests and the resource
consumption measured in instructions, we conducted the fol-
lowing experiments on IC mainnet. We selected 1000 random
bitcoin addresses that appeared in blocks in Q1 2024 with a
positive balance. The distribution of their UTXO set sizes is
skewed with 517 having fewer than 50 UTXOs, 159 addresses
returning sets of 50-199 UTXOs, 113 addresses returning 200-
999 UTXOs, and 211 address having 1000 or more UTXOs.
For each of these addresses, we sent replicated balance and
UTXO requests to the Bitcoin canister and measured the
time to receive a response and the resource consumption. In
addition, we sent balance and UTXO gquery requests. Every
response to a query request comes from a single, randomly
selected node on the subnet and therefore cannot be fully
trusted. By contrast, the responses for the replicated requests
are threshold-signed by more than two thirds of the nodes of
the subnet. We repeated the experiments with different address
sets for the same time period and obtained similar results.

On average, replicated requests take below 10s to be an-
swered, with the minimum around 7s and a 90*" percentile
of 18s. For queries, which neither go through consensus nor
require communication across subnets, the median time to get
a balance or UTXOs is about 220ms and 310ms, respectively,
and 90% of the response times are below 0.5s and 2.5s, with
considerably higher variance for UTXO requests.

Figure 7 (left) illustrates that the response time for UTXO
and balance requests depends on the size of the UTXO set.
This observation is more visible for queries than replicated
requests because in the latter the response time is dominated by
the time necessary for consensus and other protocol overhead.
We derived the number of instructions executed from the cost
of replicated UTXO requests. Figure 7 (right) shows that the
number of executed instructions varies between 5.84 - 105 and
4.76 - 10® with a clear correlation to the size of the response.
The bifurcation in the figure is due to the distinction between
stable and unstable blocks: UTXOs in unstable blocks can
be fetched more quickly compared to UTXOs that have been
migrated to the large UTXO set.

At the current exchange rate, approximately 35,000 (1,500)
requests for balances (UTXOs) can be made for 1 U.S. dollar.
By comparison, the average fee for a single Bitcoin transaction
was about 1-2 U.S. dollars at the end of 2024.

V. RELATED WORK

The idea of Bitcoin smart contracts can be traced back
at least to 2011, where, e.g., escrow and assurance contracts
using Bitcoin were proposed.'! In general, work on this topic
can be partitioned into three different approaches. The first
approach is to build smart contracts strictly using the power
of the Bitcoin scripting language. This line of work includes
custom languages that facilitate the specification of smart
contracts and their compilation into valid Bitcoin transactions.
A related approach is to extend Bitcoin’s scripting language

11See the history of https://en.bitcoin.it/wiki/Contract.
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to boost its expressiveness. The last approach is to run some
form of Bitcoin smart contracts on a different platform. We
will discuss work for each of these approaches separately.

One of the first papers about Bitcoin smart contracts in-
troduced timed commitments, which can be utilized, e.g., to
implement lotteries [8]. Subsequently, more general multi-
party computation approaches [9], [10], [11] were explored.
TypeCoin [12] models updates of a state machine as affine
logic propositions, with liveness only guaranteed when all
parties cooperate. Other languages were proposed that com-
pile transactions of a protocol to Bitcoin scripts [13], [14].
BitML [15], [16] can be used to write entire protocols, which
are then directly compiled to a set of Bitcoin transactions.

The second approach concerns extensions to the scripting
language, typically in the form of new opcodes. A covenant
is a primitive that allows transactions to restrict how the value
they transfer is used in the future [17], [18]. Covenants can
be used to implement, e.g., vaults and poison transactions to
penalize double-spending attacks. Recursive covenants make
it possible to implement a state machine that stores a cer-
tain state through a series of transactions. There are several
other proposals introducing opcodes to enable advanced smart
contracts [19], [20], [21]. An alternative is to introduce mal-
leability of transaction inputs [22]. Both the first and second
approach suffer from Bitcoin’s high costs and latency.

This work belongs to the third category of running Bitcoin

smart contracts on a different platform. While there is little
literature on this approach, numerous other blockchain-based
platforms have been built in recent years that aim to offer Bit-
coin smart contracts, such as Stacks'?, Rootstock [23], THOR-
Chain'?, and WBTC'* among others. Stacks smart contracts
can read the Bitcoin blockchain state (but not send transac-
tions). Hashes of Stacks blocks are written into Bitcoin blocks,
thus inheriting the Bitcoin latency. Rootstock (RSK) [23] is a
sidechain which uses RBTC as its native token. RBTC is 1:1
pegged to bitcoin stored at a special address on the Bitcoin
blockchain. RSK smart contracts cannot hold native bitcoins
or interact with the Bitcoin blockchain directly. More than half
of the 13 federation members need to multi-sign transactions
to exchange RBTC into bitcoins. THORChain is a cross-chain
protocol to support swaps between different blockchains via
threshold ECDSA signatures, including Ethereum and Bitcoin.
Its threshold ECDSA signature protocol relies on a syn-
chronous network assumption, making it vulnerable to node
crashes and bad networking conditions. Thus, its applicability
for global applications is questionable. Since the launch of its
mainnet Ethereum integration, THORChain has lost millions
of dollars due to successful hacks. WBTC is a protocol for
creating Bitcoin-backed wrapped tokens on various platforms,

12See https://stx.is/nakamoto.
13See https://thorchain.org/.
14See https://whbtc.network/.



including Ethereum and Arbitrum. The protocol is rather
centralized as the custodian is enacted by BitGo. BitGo uses
a multi-signature address to control the funds; however, it is
not clear who controls the different keys.

The third category also includes off-chain computing with
Bitcoin payments, e.g., using Bitcoin for contingent pay-
ments [24]. BitVM'"> and FastKitten [25] propose to combine
off-chain smart contract computing tied to Bitcoin with de-
posits and on-chain dispute resolution, which incentivize the
correct behavior of all parties involved. BitVM is limited to
two parties, a prover and a verifier, both of which need to
be online and exchange data off-chain. The prover makes a
claim that a given function evaluates for some particular inputs
to some specific output together with a deposit. If a verifier
submits evidence that this claim is wrong, the verifier obtains
the prover’s deposit. FastKitten relies on trusted execution
environments (TEEs) and thus provides confidentiality and in-
tegrity unless the TEE has been broken. FastKitten guarantees
that all honest parties obtain the correct amount after execution
or are reimbursed. It requires all parties to be known during the
setup phase and they need to interact with both Bitcoin and
the TEE operator repeatedly in bounded time. In summary,
the other approaches in the third category suffer from weaker
security guarantees and restrictions on the smart contracts.

VI. CONCLUSION

In this paper, we have illustrated how general-purpose Bit-
coin smart contracts can be executed on the Internet Computer.
The underlying architecture is based on novel concepts such
as the interconnection of the networks at the node layer and
the storage of the Bitcoin blockchain state in a smart contract
for quick and reliable access. In contrast to other approaches,
this enables smart contracts to read and write to the Bitcoin
state in a secure manner, fast and at low cost. We conjecture
that the Bitcoin canister is the smart contract with the largest
size in existence at a state size exceeding 87 GiB. Since the
integration went live, the Bitcoin canister was queried nearly 8
million times, and it received approximately 1,900 transactions
from smart contracts, which were forwarded to the Bitcoin
network. Although the integration is tailored to the capabilities
of the Internet Computer, certain aspects of the architecture
may prove to be useful for similar endeavors.

As the Bitcoin canister returns signed responses, verifiable
by any entity that knows the public key of the corresponding
subnet, it provides a trustworthy decentralized view of the
Bitcoin blockchain state. To the best of our knowledge, this is
another unique property of this integration. Thus, the presented
integration provides new functionality that can be leveraged by
decentralized applications as well as traditional blockchain-
centric web services.
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